Động thái sao chép khác biệt của các nhiễm sắc thể Vibrio lớn và nhỏ ảnh hưởng đến liều lượng gen, biểu hiện và vị trí

Springer Science and Business Media LLC - Tập 9 - Trang 1-16 - 2008
Rikard Dryselius1,2, Kaori Izutsu1, Takeshi Honda2, Tetsuya Iida1
1Laboratory of Genomic Research on Pathogenic Bacteria, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
2Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan

Tóm tắt

Quá trình sao chép nhiễm sắc thể vi khuẩn làm tăng số lượng bản sao của các gen nằm gần các điểm khởi đầu sao chép so với các gen nằm gần các đầu kết thúc. Sự khác biệt về liều lượng gen này phụ thuộc vào tốc độ sao chép, thời gian nhân đôi và kích thước nhiễm sắc thể. Mặc dù chưa được khám phá nhiều, nhưng sự khác biệt về liều lượng gen có thể ảnh hưởng đến cả biểu hiện gen và vị trí của chúng. Đối với loại vi khuẩn Vibrio, một gia đình đa dạng của các vi khuẩn gammaproteobacteria phát triển nhanh, liều lượng gen có thể đặc biệt quan trọng khi chúng có hai nhiễm sắc thể có kích thước khác nhau. Trong nghiên cứu này, chúng tôi đã xem xét động thái sao chép và hiệu ứng liều lượng gen cho các nhiễm sắc thể riêng biệt của ba loài Vibrio. Chúng tôi cũng điều tra vị trí của các loại gen cụ thể trong bộ gen. Kết quả cho thấy sự khác biệt về liều lượng gen thường xuyên lớn hơn cho nhiễm sắc thể lớn, trong khi nhiễm sắc thể nhỏ bắt đầu quá trình sao chép muộn hơn nhiều. Do đó, mức độ biểu hiện gen của nhiễm sắc thể lớn thường cao hơn và chịu tác động từ liều lượng gen. Điều này được phản ánh bởi sự phong phú hơn của các gen thiết yếu cho sự phát triển và các gen đóng góp vào sự phát triển, trong đó nhiều gen nằm gần điểm khởi đầu sao chép. Ngược lại, mức độ biểu hiện gen của nhiễm sắc thể nhỏ thấp và dường như không phụ thuộc vào liều lượng gen. Ngoài ra, các gen đặc trưng cho từng loài có sự phong phú cao và việc đại diện quá mức cho các gen liên quan đến phiên mã có thể giải thích cho việc biểu hiện không phụ thuộc vào liều lượng gen. Ở đây, chúng tôi thiết lập một mối liên hệ giữa động thái sao chép và liều lượng gen khác biệt ở một bên và mức độ biểu hiện gen cũng như vị trí của các loại gen cụ thể ở bên kia. Đối với vi khuẩn Vibrio, mối quan hệ này dường như liên quan đến sự phân cực của nội dung di truyền giữa các nhiễm sắc thể của chúng, điều này có thể cả góp phần và được làm phong phú bởi khả năng thích nghi được cải thiện.

Từ khóa

#sao chép nhiễm sắc thể #vi khuẩn #Vibrio #liều lượng gen #biểu hiện gen #động thái sao chép #genome

Tài liệu tham khảo

Thompson FL, Iida T, Swings J: Biodiversity of Vibrios. Microbiol Mol Biol Rev. 2004, 68: 403-431. 10.1128/MMBR.68.3.403-431.2004. Thompson FL, Austin B, Swings J: The Biology of Vibrios. 2006, Washington DC: ASM Press Okada K, Iida T, Kita-Tsukamoto K, Honda T: Vibrios commonly possess two chromosomes. J Bacteriol. 2005, 187: 752-757. 10.1128/JB.187.2.752-757.2005. Iida T, Kurokawa K: Comparative genomics: genome configuration and the driving forces of evolution of Vibrios. The Biology of Vibrios. Edited by: Thompson FL, Austin B, Swings J. 2006, Washington DC: ASM Press, 67-75. Reen FJ, Almagro-Moreno S, Ussery D, Boyd EF: The genomic code: inferring Vibrionaceae niche specialization. Nat Rev Microbiol. 2006, 4: 697-704. 10.1038/nrmicro1476. Dryselius R, Kurokawa K, Iida T: Vibrionaceae a versatile bacterial family with evolutionary conserved variability. Res Microbiol. 2007, 158: 479-486. 10.1016/j.resmic.2007.04.007. Egan ES, Fogel MA, Waldor MK: Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol. 2005, 56: 1129-1138. 10.1111/j.1365-2958.2005.04622.x. Fogel MA, Waldor MK: Distinct segregation dynamics of the two Vibrio cholerae chromosomes. Mol Microbiol. 2005, 55: 125-136. 10.1111/j.1365-2958.2004.04379.x. Srivastava P, Fekete RA, Chattoraj DK: Segregation of the replication terminus of the two Vibrio cholerae chromosomes. J Bacteriol. 2006, 188: 1060-1070. 10.1128/JB.188.3.1060-1070.2006. Fiebig A, Keren K, Theriot JA: Fine-scale time-lapse analysis of the biphasic dynamic behaviour of the two Vibrio cholerae chromosomes. Mol Microbiol. 2006, 60: 1164-1178. 10.1111/j.1365-2958.2006.05175.x. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L: DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 2000, 406: 477-483. 10.1038/35020000. Yamaichi Y, Fogel MA, Waldor MK: par genes and the pathology of chromosome loss in Vibrio cholerae. Proc Natl Acad Sci USA. 2007, 104: 630-635. 10.1073/pnas.0608341104. Egan ES, Waldor MK: Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell. 2003, 114: 521-530. 10.1016/S0092-8674(03)00611-1. Egan ES, Lobner-Olesen A, Waldor MK: Synchronous replication initiation of the two Vibrio cholerae chromosomes. Curr Biol. 2004, 13: R501-R502. 10.1016/j.cub.2004.06.036. Rasmussen T, Jensen RB, Skovgaard O: The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle. EMBO J. 2007, 26: 3124-3131. 10.1038/sj.emboj.7601747. Srivastava P, Chattoraj DK: Selective chromosome amplification in Vibrio cholerae. Mol Microbiol. 2007, 66: 1016-1028. 10.1111/j.1365-2958.2007.05973.x. Yamaichi Y, Iida T, Park KS, Yamamoto K, Honda T: Physical and genetic map of the genome of Vibrio parahaemolyticus: presence of two chromosomes in Vibrio species. Mol Microbiol. 1999, 31: 1513-1521. 10.1046/j.1365-2958.1999.01296.x. Aiyar SE, Gaal T, Gourse RL: rRNA promoter activity in the fast-growing bacterium Vibrio natriegens. J Bacteriol. 2002, 184: 1349-1358. Joseph SW, Colwell RR, Kaper JB: Vibrio parahaemolyticus and related halophilic Vibrios. Crit Rev Microbiol. 1982, 10: 77-124. 10.3109/10408418209113506. Duigou S, Knudsen KG, Skovgaard O, Egan ES, Lobner-Olesen A, Waldor MK: Independent control of replication initiation of the two Vibrio cholerae chromosomes by DnaA and RctB. J Bacteriol. 2006, 188: 6419-6424. 10.1128/JB.00565-06. Couturier E, Rocha EP: Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol Microbiol. 2006, 59: 1506-1518. 10.1111/j.1365-2958.2006.05046.x. Schmid MB, Roth JR: Gene location affects expression level in Salmonella typhimurium. J Bacteriol. 1987, 169: 2872-2875. Sousa C, de Lorenzo V, Cebolla A: Modulation of gene expression through chromosomal positioning in Escherichia coli. Microbiology. 1997, 143: 2071-2078. Lobner-Olesen A, Marinus MG, Hansen FG: Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc Natl Acad Sci USA. 2003, 100: 4672-4677. 10.1073/pnas.0538053100. Roth JR, Benson N, Galitski T, Haack K, Lawrence JG, Miesel L: Rearrangements of the bacterial chromosome: formation and applications. Escherichia coli and Salmonella: Cellular and Molecular Biology. Edited by: Neidhardt FC. 1996, Washington DC: American Society for Microbiology, 2: 2256-2276. 2 Hill CW, Gray JA: Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. Genetics. 1988, 119: 771-778. Liu SL, Sanderson KE: Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci USA. 1996, 93: 10303-10308. 10.1073/pnas.93.19.10303. Kothapalli S, Nair S, Alokam S, Pang T, Khakhria R, Woodward D, Johnson W, Stocker BA, Sanderson KE, Liu SL: Diversity of genome structure in Salmonella enterica serovar Typhi populations. J Bacteriol. 2005, 187: 2638-2650. 10.1128/JB.187.8.2638-2650.2005. Rocha EP: The replication related organization of bacterial genomes. Microbiology. 2004, 150: 1609-1627. 10.1099/mic.0.26974-0. Marians KJ: Replication fork propagation. Escherichia coli and Salmonella: Cellular and Molecular Biology. Edited by: Neidhardt FC. 1996, Washington DC: American Society for Microbiology, 1: 749-763. 2 Atlung T, Hansen FG: Low-temperature-induced DnaA protein synthesis does not change initiation mass in Escherichia coli K12. J Bacteriol. 1999, 181: 5557-5562. Carpentier AS, Torresani B, Grossmann A, Henaut A: Decoding the nucleoid organisation of Bacillus subtilis and Escherichia coli through gene expression data. BMC Genomics. 2005, 6: 84-10.1186/1471-2164-6-84. Jeong KS, Ahn J, Khodursky AB: Spatial patterns of transcriptional activity in the chromosome of Escherichia coli. Genome Biol. 2004, 5: R86-10.1186/gb-2004-5-11-r86. Wright MA, Kharchenko P, Church GM, Segre D: Chromosomal periodicity of evolutionary conserved gene pairs. Proc Natl Acad Sci USA. 2007, 104: 10559-10564. 10.1073/pnas.0610776104. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006, 2: 2006.0008.-10.1038/msb4100050. Zhou Y, Landweber LF: BLASTO: a tool for searching orthologous groups. Nucleic Acids Res. 2007, 35: W678-82. 10.1093/nar/gkm278. Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A: Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet. 2003, 361: 743-749. 10.1016/S0140-6736(03)12659-1. Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, Liu YM, Chen HJ, Shen AB, Li JC: Comparative genome analysis of Vibrio vulnificus a marine pathogen. Genome Res. 2003, 13: 2577-2587. 10.1101/gr.1295503. Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, Lostroh P, Lupp C, McCann J, Millikan D: Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci USA. 2005, 102: 3004-3009. 10.1073/pnas.0409900102. Vezzi A, Campanaro S, D'Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N: Life at depth: Photobacterium profundum genome sequence and expression analysis. Science. 2005, 307: 1459-1461. 10.1126/science.1103341. Clusters of Orthologous Groups of proteins. [http://www.ncbi.nlm.nih.gov/COG/] Xu Q, Dziejman M, Mekalanos JJ: Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci USA. 2003, 100: 1286-1291. 10.1073/pnas.0337479100. Kolesov G, Wunderlich Z, Laikova ON, Gelfand MS, Mirny LA: How gene order is influenced by the biophysics of transcription regulation. Proc Natl Acad Sci USA. 2007, 104: 13948-13953. 10.1073/pnas.0700672104. Kepes F: Periodic transcriptional organisation of the E. coli genome. J Mol Biol. 2004, 340: 957-964. 10.1016/j.jmb.2004.05.039. Price MN, Dehal PS, Arkin AP: Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli. Genome Biol. 2008, 9: R4-10.1186/gb-2008-9-1-r4. Lercher MJ, Pal C: Integration of horizontally transferred genes into regulatory interaction networks takes many million years. Mol Biol Evol. 2008, 25: 559-567. 10.1093/molbev/msm283. Choudhary M, Zanhua X, Fu YX, Kaplan S: Genome analyses of three strains of Rhodobacter sphaeroides: evidence of rapid evolution of chromosome II. J Bacteriol. 2007, 189: 1914-1921. 10.1128/JB.01498-06. Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, Umayam L, Brinkac LM, Beanan MJ: The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA. 2002, 99: 13148-13153. 10.1073/pnas.192319099. Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL, Qing Z, Li LL, Kapur V, Alt DP, Olsen SC: Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol. 2005, 187: 2715-2726. 10.1128/JB.187.8.2715-2726.2005. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L: Genome sequence of the plant pathogen Ralstonia solanacearum. Nature. 2002, 415: 497-502. 10.1038/415497a. Holden MT, Titball RW, Peacock SJ, Cerdeño-Tárraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD: Genomic plasticity the causative agent of melioidosis Burkholderia pseudomallei. Proc Natl Acad Sci USA. 2004, 101: 14240-14245. 10.1073/pnas.0403302101. Romling U, Tummler B: Achieving 100% typeability of Pseudomonas aeruginosa by pulsed-field gel electrophoresis. J Clin Microbiol. 2000, 38: 464-465. Cooper S, Helmstetter CE: Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol. 1968, 31: 519-540. 10.1016/0022-2836(68)90425-7. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262. Izutsu K, Kurokawa K, Tashiro K, Kuhara S, Hayashi T, Honda T, Iida T: Comparative genomic analysis using microarray demonstrates strong correlation between presence of Vp-PAI and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus. Infect Immun. 2008, 76: 1016-1023. 10.1128/IAI.01535-07. Gene Expression Omnibus. [http://www.ncbi.nlm.nih.gov/projects/geo/]