Sự đồng hóa phân hóa và sự duy trì ranh giới loài trong một vùng lai tạp của các loài chim qua nhiều thế hệ

Springer Science and Business Media LLC - Tập 16 - Trang 1-18 - 2016
Jennifer Walsh1,2, W. Gregory Shriver3, Brian J. Olsen4, Adrienne I. Kovach1
1Department of Natural Resources and the Environment, University of New Hampshire, Durham, USA
2Cornell Lab of Ornithology, Cornell University, Ithaca, USA
3Department of Entomology and Wildlife Ecology, University of Delaware, Newark, USA
4School of Biology and Ecology, University of Maine, Orono, USA

Tóm tắt

Các quá trình tiến hóa, bao gồm sự chọn lọc và khả năng sinh sản khác nhau, tác động đến sự đồng hóa của vật liệu di truyền trong một vùng lai tạp, dẫn đến việc trao đổi một số gen nhưng không phải tất cả. Sự đồng hóa khác nhau của các dấu hiệu phân tử hoặc kiểu hình, do đó, có thể cung cấp cái nhìn sâu sắc về các yếu tố góp phần vào sự cách ly sinh sản. Chúng tôi đã xác định các mô hình biến dị di truyền trong một vùng lai tạp giữa hai loài chim ở đầm lầy thủy triều, chim Saltmarsh (Ammodramus caudacutus) và chim Nelson (A. nelsoni) (n = 286) và so sánh các mô hình đồng hóa giữa nhiều dấu hiệu di truyền và các đặc điểm kiểu hình. Phân tích cline địa lý và gen cho thấy các mô hình đồng hóa khác nhau giữa các loại dấu hiệu. Hầu hết các dấu hiệu thể hiện các đường cline dần dần và chỉ ra rằng sự đồng hóa vượt qua phạm vi không gian của vùng lai tạp đã được ghi nhận trước đó. Chúng tôi tìm thấy các đường cline dốc hơn, chỉ ra sự chọn lọc mạnh cho các địa điểm liên quan đến các đặc điểm thích nghi với đầm lầy thủy triều, bao gồm một dấu hiệu liên kết với vùng gen liên quan đến các chức năng trao đổi chất, bao gồm một con đường điều hòa thẩm thấu, cũng như một dấu hiệu liên quan đến sắc tố melanin, hỗ trợ vai trò thích nghi của bộ lông sẫm màu hơn (melanism ở đầm lầy muối) trong các đầm lầy thủy triều. Các đường cline hẹp ở các dấu hiệu liên kết với ti thể và giới tính cũng hỗ trợ quy tắc Haldane. Chúng tôi phát hiện các mô hình đồng hóa không đối xứng về phía A. caudacutus, điều này có thể bị chi phối bởi sự khác biệt trong chiến lược ghép đôi hoặc sự khác biệt trong mật độ quần thể giữa hai loài. Các phát hiện của chúng tôi cung cấp cái nhìn sâu sắc về động lực của một vùng lai tạp vượt qua một gradient môi trường độc đáo và cung cấp bằng chứng cho vai trò của sự phân hóa sinh thái trong việc duy trì ranh giới loài tinh khiết bất chấp dòng chảy gen đang diễn ra.

Từ khóa

#tiến hóa #đồng hóa gen #đầm lầy thủy triều #giống lai tạp #cách ly sinh sản #phân hóa sinh thái

Tài liệu tham khảo

Payseur BA. Using differential introgression in hybrid zones to identify genomic regions involved in speciation. Mol Ecol Res. 2010;10:806–20. Gagnaire PA, Minegishi Y, Zenboudji S, Valade P, Aoyama J, Berrebi P. Within population structure highlighted by differential introgression across semipermeable barriers to gene flow in Anguilla marmorata. Evolution. 2011;65:3413–27. Mallet J. Hybridization as an invasion of the genome. Trends Ecol Evol. 2005;20:229–37. Grant PR, Grant BR. Hybridization of bird species. Science. 1992;256:193–7. Kane NC, King MG, Barker MS, et al. Comparative genomic and population genetic analyses indicate highly porous genomes and high levels of gene flow between divergent helianthus species. Evolution. 2009;63:2061–75. Carneiro M, Albert FW, Afonso S, Periera RJ, Burbano H, Campos R, Melo-Ferreira J et al. The genomic architecture of population divergence between subspecies of the European rabbit. Plos Genet, 2014; doi:10.1371/journal.pgen.1003519 Abbott R, Albach D, Ansell S, et al. Hybridization and speciation. J Evol Biol. 2013;26:229–46. Gompert Z, Lucas LK, Nice CC, Buerkle CA. Genomic divergence and the genetic architecture of barriers to gene flow between Lycaeides Idas and L. Melissa. Evolution. 2013;67:2498–514. Barton NH, Hewitt GM. Hybrid zones and speciation. In: Atchley WR, Woodruff DS, editors. Evolution and speciation. Cambridge: Cambridge University Press; 1981. p. 109–45. Harrison RG. Patterns and process in a narrow hybrid zone. Heredity. 1986;56:337–49. Baldassarre DT, White TA, Karubian J, Webster MS. Genomic and morphological analysis of a semipermeable avian hybrid zone suggests asymmetrical introgression of a sexual signal. Evolution. 2014;68:2644–57. Payseur BA, Krenz JG, Nachman MW. Differential patterns of introgression across the X chromosome in a hybrid zone between two species of house mice. Evolution. 2004;58:2064–78. Chatfield MWH, Kozak KH, Fitzpatrick BM, Tucker PK. Patterns of differential introgression in a salamander hybrid zone: inferences from genetic data and ecological niche modelling. Mol Ecol. 2010;19:4265–82. Beysard M, Perrin N, Jaarola M, Heckel G, Vogel P. Asymmetric and differential introgression at a contact zone between two highly divergent lineages of field voles (Microtus agrestis). J Evol Biol. 2010;25:400–8. Shuker DM, Underwood K, King TM, Butlin RK. Patterns of male sterility in a grasshopper hybrid zone imply accumulation of hybrid incompatibilities without selection. Proc R Soc Lond [Biol]. 2005;272:2491–7. DuBay SG, Witt CC. Differential high-altitude adaptation and restricted gene flow across a mid-elevation hybrid zone in Andean tit-tyrant flycatchers. Mol Ecol. 2014;23:3551–65. Mettler RD, Spellman GM. A hybrid zone revisited: molecular and morphological analysis of the maintenance, movement, and evolution of a Great Plains avian (Cardinalidae: Pheucticus) hybrid zone. Mol Ecol. 2009;18:3256–67. Teeter KC, Payseur BA, Harris LW, et al. Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Res. 2008;18:67–76. Yuri T, Jernigan RW, Brumfield RT, Bhagabati NK, Braun MJ. The effect of marker choice on estimated levels of introgression across an avian (Pipridae: Manacus) hybrid zone. Mol Ecol. 2009;18:4888–903. Sambatti JBM, Strasburg JL, Ortiz-Barrientos D, Baack EJ, Rieseberg LH. Reconciling extremely strong barriers with high levels of gene exchange in annual sunflowers. Evolution. 2012;66:1459–73. Parchman TL, Gompert Z, Braun MJ, Brumfield RT, McDonald DB, Uy JAC, et al. The genomic consequences of adaptive divergence and reproductive isolation between two species of manakins. Mol Ecol. 2013;22:3304–17. Larson EL, White TA, Ross CL, Harrison RG. Gene flow and the maintenance of species boundaries. Mol Ecol. 2014;23:1668–78. Teeter KC, Thibodeau LM, Gompert Z, Buerkle CA, Nachman MW, Tucker PK. The variable genomic architecture of isolation between hybridizing species of house mice. Evolution. 2010;18:462–75. Nielsen EE, Cariani A, Mac Aiodh E, et al. Gene-associated markers provide tools for tackling illegal fishing and false eco-certification. Nat Comm. 2012;3:851. doi:10.1038/ncomms1845. Haldane JBS. Sex ratio and unisexual sterility in animal hybrids. J Genet. 1922;12:101–9. Saetre GP, Borge T, Lindroos K, Haavie J, Sheldon BC, Primmer C, et al. Sex chromosome evolution and speciation in Ficedula flycatchers. Proc R Soc Lond [Biol]. 2003;270:53–9. Carling MD, Brumfield RT. Haldane’s rule in an avian system: using cline theory and divergence population genetics to test for differential introgression of mitochondrial, autosomal, and sex-linked loci across the Passerina bunting hybrid zone. Evolution. 2008;62:2600–15. Jacobsen F, Omland KE. Extensive introgressive hybridization within the northern oriole group (Genus Icterus) revealed by three-species isolation with migration analysis. Ecol Evol. 2012;2:2413–29. Gay L, Crochet PA, Bell DA, Lenormand T. Comparing clines on molecular and phenotypic traits in hybrid zones: A window on tension zone models. Evolution. 2008;62:2789–806. Buggs RJA. Empirical study of hybrid zone movement. Heredity. 2007;99:301–12. Dakin E. Cytonuclear disequilibria in a spatially structured hybrid zone. Theor Popul Biol. 2006;70:82–91. Edwards SV, Kingan SB, Calkins JD, Balakrishnan CN, Bryan Jennings W, Swanson WJ, et al. Speciation in birds: genes, geography and sexual selection. Proc Natl Acad Sci. 2005;102:6550–7. Woodcock EA, Rathburn MK, Ratcliffe LM. Achromatic plumage reflectance, social dominance and female mate preference in Black-Capped Chickadees (Poecile atricaplillus). Ethology. 2005;111:891–900. Olsen BJ, Greenberg R, Liu IA, Felch JM, Walters JR. Interactions between sexual and natural selection on the evolution of a plumage badge. Ecol Evol. 2010;24:731–48. Siefferman L, Hill GE. Structural and melanin coloration indicate parental effort and reproductive success in male eastern bluebirds (Sialia sialis). Behav Ecol. 2003;14:855–61. Rising JD, Avise JC. The application of genealogical concordance principles to the taxonomy and evolutionary history of the Sharp-tailed Sparrow (Ammodramus caudacutus). Auk. 1993;110:844–56. Greenlaw, JS, Rising, JD. Saltmarsh Sparrow (Ammodramus caudacutus), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/112, 1993. Accessed on March, 2015. Shriver, WG, Hodgman, TP, Hanson, AR. Nelson’s Sparrow (Ammodramus nelsoni), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/719, 2011. Accessed on March, 2015. Hodgman TP, Shriver WG, Vickery PD. Redefining range overlap between the Sharp-tailed Sparrows of coastal New England. Wilson Bull. 2002;114:38–43. Shriver WG, Gibbs JP, Vickery PD, et al. Concordance between morphological and molecular markers in assessing hybridization between Sharp-tailed sparrows in New England. Auk. 2005;122:94–107. Walsh J, Kovach AI, Lane OP, O’Brien KM, Babbitt KJ. Genetic barcode RFLP analysis of the Nelson’s and Saltmarsh sparrow hybrid zone. Wilson J Ornithol. 2011;123:316–22. Walsh J, Shriver WG, Olsen BJ, O’Brien KM, Kovach AI. Relationship of phenotypic variation and genetic admixture in the Saltmarsh-Nelson’s sparrow hybrid zone. Auk. 2015;132:704–16. Culumber ZW, Fisher HS, Tobler M, Mateos M, Barber PH, Sorenson MD, et al. Replicated hybrid zones of Xiphophorus swordtails along an elevational gradient. Mol Ecol. 2010;20:342–56. Hamilton JA, Lexer C, Aitken SN. Genomic and phenotypic architecture of a spruce hybrid zone (Picea sitchensis x P. glauca). Mol Ecol. 2013;22:827–41. Greenberg R. Tidal marshes: home for the few and the highly selected. In: Greenberg R, Maldonado JE, Droege S, McDonald MV, editors. Terrestrial vertebrates of tidal marshes: evolution, ecology, and conservation, Studies in Avian Biology. 32nd ed. 2006. p. 2–9. Bayard TS, Elphick CS. Planning for sea level rise: quantifying patterns of Saltmarsh Sparrow (Ammodramus caudacutus) nest flooding under current sea level conditions. Auk. 2011;128:393–403. Chan YL, Hill CE, Maldonado JE, Fleischer RC. Evolution and conservation of tidal-marsh vertebrates: molecular approaches. In: Greenberg R, Maldonado JE, Droege S, McDonald MV, editors. Terrestrial vertebrates of tidal marshes: evolution, ecology, and conservation, Studies in Avian Biology. 32nd ed. 2006. p. 54–75. Walsh J, Rowe RJ, Olsen BJ, Shriver WG, Kovach AI. Genotype-environment associations support a mosaic hybrid zone between two tidal marsh birds. Ecol & Evol. 2015;6:279–94. Grinnell J. The species of the mammalian genus Sorex of west-central California with a note on vertebrate palustrine fauna of the region. Univ Calif Publ Zool. 1913;20:179–205. Grenier JL, Greenberg R. Trophic adaptations in sparrows and other vertebrates of tidal marshes. In: Greenberg R, Maldonado JE, Droege S, MacDonald MV, editors. Terrestrial vertebrates of tidal marshes: ecology, evolution, and conservation, Studies in Avian Biology. 32nd ed. 2006. Greenlaw JS. Behavioral and morphological diversification in Sharp-tailed Sparrows(Ammodramus caudacutus) of the Atlantic Coast. Auk. 1993;110:286–303. Kovach AI, Walsh J, Ramsdell J, Thomas K. Development of diagnostic microsatellite markers from whole genome sequences of Ammodramus sparrows for assessing admixture in a hybrid zone. Ecol Evol. 2015;5:2267–83. Greenberg R, Droege S. Adaptation to tidal marshes in breeding populations of the Swamp Sparrow. Condor. 1990;92:393–404. Luttrell SA, Gonzalez ST, Lohr B, Greenberg R. Digital photography quantifies plumage variation and salt marsh melanism among Song Sparrow (Melospiza melodia) subspecies of the San Francisco Bay. Auk. 2014;132:277–87. Edwards CE, Soltis DE, Soltis PS. Using patterns of genetic structure based on microsatellite loci to test hypotheses of current hybridization, ancient hybridization and incomplete lineage sorting in Conradina (Lamiaceae). Mol Ecol. 2008;17:5157–74. Hird S, Sullivan J. Assessment of gene flow across a hybrid zone in red-tailed chipmunks (Tamias ruficanudus). Mol Ecol. 2009;18:3097–109. Coyne JA, Orr HA. Speciation. Sunderland, MA: Sinauer Associates, Inc.; 2004. Dobzhansky T. Genetics and the origin of species. New York: Columbia University Press; 1937. Muller HJ. Bearing of the Drosophila work on systematics. In: Haldane JBS, editor. The new systematics. Oxford: Clarendon; 1940. p. 185–268. Muller HJ. Isolating mechanisms, evolution, and temperature. Biol Sym. 1942;6:71–125. Turelli M. The causes of Haldane’s Rule. Science. 1998;282:889–91. Svedin N, Wiley C, Veen T, Gustafsson L, Qvarnström A. Natural and sexual selection against hybrid flycatchers. Proc R Soc Lond [Biol]. 2008;275:735–44. Neubauer G, Nowicki P, Zagalska-Neubauer M. Haldane’s rule revisited: do hybrid females have a shorter lifespan? Survival of hybrids in a recent contact zone between two large gull species. J Evol Bio. 2014;6:1248–55. Crochet PA, Chen JJZ, Pons JM, Levreton JD, Hebert PND, Bonhomme F. Genetic differentiation at nuclear and mitochondrial loci among large white headed gulls: sex-biased interspecific gene flow? Evolution. 2003;57:2865–78. Backström N, Väli U. Sex- and species- biased gene flow in a spotted eagle hybrid zone. BMC Evol Biol. 2011;11:100. Shiver WG, Vickery PD, Hodgman TP, Gibbs JP. Flood tides affect breeding ecology of two sympatric sharp-tailed sparrows. Auk. 2007;124:552–60. Walsh J. Hybrid zone dynamics between Saltmarsh (Ammodramus caudacutus) and Nelson’s (Ammodramus nelsoni) Sparrows. In: Dissertation. Durham, NH, USA: University of New Hampshire; 2015. Hilderbrandt JP. Coping with excess salt: adaptive functions of extrarenal osmoregulatory organs in vertebrates. Zoology. 2001;104:209–20. Cowan KJ, Storey KB. Mitogen-activated protein kinases: new signaling pathways functioning in cellular response to environmental stress. J Exp Biol. 2003;206:1107–15. Chen S, Gardner DG. Osmoregulation of natriuretic peptide receptor signaling in inner medullary collecting duct. A requirement for p38 MAPK. J Biol Chem. 2002;277:6037–43. Vom Dahl S, Schliess F, Graf D, Haussinger D. Role of p38 (MAPK) in cell volume regulation in perfused rat liver. Cell Physiol Biochem. 2001;11:285–94. Kultz D, Avila K. Mitogen-activated protein kinases are in vivo transducers of osmoseensory signals in fish gill cells. Comp Biochem Physiol B. 2001;129:821–9. Goldstein DL. Osmoregulatory biology of saltmarsh passerines. In: Greenberg R, Maldonado JE, Droege S, McDonald MV, editors. Terrestrial vertebrates of tidal marshes: evolution, ecology, and conservation, Studies in Avian Biology. 2006. p. 32–118. Nocera JJ, Fitzgerald TM, Hanson AR, Milton GR. Differential habitat use by Acadian Nelson’s Sharp-tailed Sparrows: implications for regional conservation. J Field Ornithol. 2007;78:50–5. Gunnarsson U, Hellström AR, Tixier-Boichard M, Minvielle F, Bed’hom B, Ito S, et al. Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics. 2007;175:867–77. Poelstra JW, Vijay N, Bossu CM, Lantz H, Ryll B, Müller I, et al. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science. 2014;344:1410–4. Roulin A. Melanin pigmentation negatively correlates with plumage preening effort in Barn Owls. Funct Ecol. 2007;21:264–71. Peele AM, Burtt Jr EH, Schroeder MR, Greenberg RS. Dark color of the Coastal Plain Swamp Sparrow (Melospiza Georgiana nigrescens) may be an evolutionary response to occurrence and abundance of salt-tolerant feather-degrading bacilli in its plumage. Auk. 2009;126:531–5. Hill CE, Gjerdrum C, Elphick CS. Extreme levels of multiple mating characterize the mating system of the Saltmarsh Sparrow (Ammodramus caudacutus). Auk. 2010;127:300–7. Shriver WG, Hodgman TP, Gibbs JP, Vickery PD. Home range sizes and habitat use of Nelson’s and Saltmarsh sparrows. Wilson J Ornithol. 2010;122:340–5. Rohwer S, Bermingham E, Wood C. Plumage and mitochondrial DNA haplotype variation across a moving hybrid zone. Evolution. 2001;55:405–22. Secondi J, Faivre B, Bensch S. Spreading introgression in the wake of a moving contact zone. Mol Ecol. 2006;15:2463–75. Den Hartog PM, Den Boer-Visser AM, Ten Cate C. Unidirectional hybridization and introgression in an avian contact zone: Evidence from genetic markers, morphology, and comparisons with laboratory-raised F1 hybrids. Auk. 2010;127:605–16. Barton NH, Hewitt GM. Analysis of hybrid zones. Annu Rev Ecol Syst. 1985;16:113–48. Hanotte O, Zanon C, Pugh A, Greig C, Dixon A, Burke T. Isolation and characterization of microsatellite loci in a passerine bird: the Reed Bunting Emberiza schoeniclus. Mol Ecol. 1994;3:529–30. Bulgin NL, Gibbs HL, Vickery P, Baker AJ. Ancestral polymorphism in genetic markers obscure detection of evolutionarily distinct populations in the endangered Florida Grasshopper Sparrow (Ammodramus savannarum floridanus). Mol Ecol. 2003;12:831–44. Hill CE, Tomko S, Hagen C, Schable NA, Glenn TC. Novel microsatellite markers for the Saltmarsh Sharp-tailed Sparrow, Ammodramus caudacutus (Aves: Passeriformes). Mol Ecol Res. 2008;8:113–5. Raymond M, Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–9. Goudet J. FSTAT: a computer program to calculate F-statistics. J Hered. 1995;86:485–6. Gompert Z, Buerkle CA. A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol Ecol. 2009;18:1207–24. Gompert Z, Buerkle CA. INTROGRESS: a software package for mapping components of isolation in hybrids. Mol Ecol Res. 2010;10:378–84. Beaumont MA, Nichols RA. Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond [Biol]. 1996;263:1619–26. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G. LOSITAN: a workbench to detect molecular adaptation based on an F ST outlier method. BMC Bioinformatics. 2008;9:323–7. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics. 2003;164:1567–87. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol. 2005;14:2611–20. Earl DA, vonHoldt BM. structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Con Gen Res. 2012;4:359–61. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. JR Stat Soc Ser B Stat Methodol. 1995;57:289–300. Fitzpatrick BM. Alternative forms for genomic clines. Ecol Evol. 2013;3:1951–66. Derryberry EP, Derryberry GE, Maley JM, Brumfield RT. HZAR: hybrid zone analysis using an R software package. Mol Ecol Res. 2013;14:652–63. R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2008. Daguin C, Bonhomme F, Borsa P. The zone of sympatry and hybridization of Mytilus edulis and M. galloprovincialis, as described by intron length polymorphism at locus mac-1. Heredity. 2001;86:342–54. Bierne N, Borsa P, Daguin C, Jollivet D, Viard F, Bonhomme F, et al. Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M. galloprovincialis. Mol Ecol. 2003;12:447–61. Burnham, KP, Anderson, DR. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2002. Barton NH, Gale KS. Genetic analysis of hybrid zones. In: Harrison RG, editor. Hybrid zones and the evolutionary process. New York, NY: Oxford University Press; 1993. p. 13–45.