Differential interactions of halophilic and non-halophilic proteases with nanoparticles

Sustainable Chemical Processes - Tập 2 - Trang 1-8 - 2014
Rajeshwari Sinha1, Sunil K Khare1
1Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, India

Tóm tắt

Increase in the industrial use of nanomaterials and nanoparticles (NPs) make their release into the environment inevitable. This may lead to environmental contamination and exposure of the biological/ microbial diversity. Nanoparticles have been reported to impregnate the cells and interact with cellular biomolecules especially proteins and DNA, leading to nanotoxicity in many cases. The present work targets to study nanoparticle-protein interactions in-vitro, especially to assess their effects on extracellularly secreted enzymes. The primary extracellular enzymes viz. hydrolases and proteases could be the first to come in contact with environmentally released nanoparticles. Two halophilic proteases from Geomicrobium sp. EMB2 and Bacillus sp. EMB9 and one non-halophilic protease, subtilisin from Bacillus licheniformis have been investigated for their interaction with silver and zinc oxide nanoparticles as model systems. The activities of Geomicrobium sp. and Bacillus sp. protease were unaffected while that of non-halophilic subtilisin was lost by 70% and 30% in presence of Ag and ZnO nanoparticles respectively. The secondary and tertiary structure of halophilic proteases was unchanged on exposure to ZnO and Ag nanoparticles. Non-halophilic protease showed significant loss in α-helical structure with changes in the microenvironment of the protein as observed by CD and fluorescence spectroscopy. The greater stability and structural integrity may be attributed to higher negative charges on the surfaces of halophilic proteins. Halophilic extracellular proteases were more stable and did not lose proteolytic activity. Their secondary structure remained unaffected by interaction with ZnO and Ag nanoparticles. Alterations in structure and loss of activity in non-halophilic protease have been quite prevalent on exposure to nanoparticles. The extracellular halophilic nanostable enzymes thus offer a promising robust system to counter nanotoxicity. A precise understanding of nanoparticle interaction with extracellular enzymes will pave the way for designing of novel enzymes and creating appropriate system to protect microbial diversity against nanoparticle disposal.

Tài liệu tham khảo

Oberdörster G, Stone V, Donaldson K: Toxicology of nanoparticles: A historical perspective. Nanotoxicology. 2007, 1: 2-25. 10.1080/17435390701314761. Sinha R, Khare SK: Molecular basis of nanotoxicity and interaction of microbial cells with nanoparticles. Curr Biotechnol. 2013, 2: 64-72. Ray PC, Yu H, Fu PP: Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C. 2009, 27: 1-35. 10.1080/10590500802708267. Lynch I, Dawson KA: Protein-nanoparticle interactions. Nano Today. 2008, 3: 40-47. 10.1016/S1748-0132(08)70014-8. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S: Protein-nanoparticle interactions: opportunities and challenges. Chem Rev. 2011, 111: 5610-5637. 10.1021/cr100440g. Sinha R, Karan R, Sinha A, Khare SK: Interaction and nanotoxic effect of ZnO and Ag nanoparticles on non-halophilic and halophilic bacterial cells. Bioresour Technol. 2011, 102: 1516-1520. 10.1016/j.biortech.2010.07.117. Karan R, Kumar S, Sinha R, Khare SK: Halophilic microorganisms as source of novel enzymes. Microorganisms in Sustainable Agriculture and Biotechnology. Edited by: Satyanarayana T, Johri BN. 2012, Netherlands: Springer, 555-579. Dodia MS, Bhimani HG, Rawal CM, Joshi RH, Singh SP: Salt dependent resistance against chemical denaturation of alkaline protease from a newly isolated Haloalkaliphilic Bacillus sp. Bioresour Technol. 2008, 99: 6223-6227. 10.1016/j.biortech.2007.12.020. Karan R, Khare SK: Stability of haloalkaliphilic Geomicrobium sp. protease modulated by salt. Biochemistry (Mosc). 2011, 76: 686-693. 10.1134/S0006297911060095. Nie S, Xing Y, Kim GJ, Simons JW: Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007, 9: 257-288. 10.1146/annurev.bioeng.9.060906.152025. Marcato PD, Duran N: New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol. 2008, 8: 2216-2229. 10.1166/jnn.2008.274. McBain SC, Yiu HH, Dobson J: Magnetic nanoparticles for gene and drug delivery. Int J Nanomed. 2008, 3: 169-180. Colmenares JC, Luque R: Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chem Soc Rev. 2014, 10.1039/C3CS60262A Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D: Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007, 18: 225103-10.1088/0957-4484/18/22/225103. Zhang H, Xiong H: Biological applications of ZnO nanoparticles. Mol Imaging. 2013, 2: 177-192. 10.2174/22115552113029990012. Smith EL, Markland FS, Kasper CB, DeLange RJ, Landon M, Evans WH: The complete amino acid sequence of two types of Subtilisin, BPN' and Carlsberg. J Biol Chem. 1966, 241: 5974-5976. Kulakova L, Galkin A, Kurihara T, Yoshimura T, Esaki N: Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol. 1999, 65: 611-617. Karan R, Singh RK, Kapoor S, Khare SK: Gene identification and molecular characterization of solvent stable protease from a moderately haloalkaliphilic bacterium, Geomicrobium sp. EMB2. J Microbiol Biotechnol. 2011, 21: 129-135. 10.4014/jmb.1007.07064. Deole R, Challacombe J, Raiford DW, Hoff WD: An extremely halophilic proteobacterium combines a highly acidic proteome with a low cytoplasmic potassium content. J Biol Chem. 2013, 288: 581-588. 10.1074/jbc.M112.420505. Bardavid RE, Oren A: Acid-shifted isoelectric point profiles of the proteins in a hypersaline microbial mat: an adaptation to life at high salt concentrations?. Extremophiles. 2012, 16: 787-792. 10.1007/s00792-012-0476-6. Chen K, Xu Y, Rana S, Miranda OR, Dubin PL, Rotello VM, Sun L, Guo X: Electrostatic selectivity in protein-nanoparticle interactions. Biomacromolecules. 2011, 12: 2552-2561. 10.1021/bm200374e. Chakraborti S, Chatterjee T, Joshi P, Poddar A, Bhattacharyya B, Singh SP, Gupta V, Chakrabarti P: Structure and activity of lysozyme on binding to ZnO nanoparticles. Langmuir. 2012, 26: 3506-3513. Chatterjee T, Chakraborti S, Joshi P, Singh SP, Gupta V, Chakrabarti P: The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein. FEBS J. 2010, 277: 4184-4194. 10.1111/j.1742-4658.2010.07807.x. Khan MJ, Qayyum S, Alam F, Husain Q: Effect of tin oxide nanoparticle binding on the structure and activity of α-amylase from Bacillus amyloliquefaciens. Nanotechnology. 2011, 22: 455708-10.1088/0957-4484/22/45/455708. Xu Z, Liu XW, Ma YS, Gao HW: Interaction of nano-TiO2 with lysozyme: insights into the enzyme toxicity of nanosized particles. Environ Sci Pollut Res Int. 2010, 17: 798-806. 10.1007/s11356-009-0153-1. Qiu H, Lu L, Huang X, Zhang Z, Qu Y: Immobilization of horseradish peroxidase on nanoporous copper and its potential applications. Bioresour Technol. 2010, 101: 9415-9420. 10.1016/j.biortech.2010.07.097. Sinha R, Khare SK: Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: Differential role of metal ions in stability and activity. Bioresour Technol. 2013, 145: 357-361. Karan R, Khare SK: Purification and characterization of a solvent-stable protease from Geomicrobium sp. EMB2. Environ Technol. 2010, 31: 1061-1072. 10.1080/09593331003674556. Shimogaki H, Takeuchi K, Nishino T, Ohdera M, Kudo T, Ohba K, Iwama M, Irie M: Purification and properties of a novel surface active agent and alkaline-resistant protease from Bacillus sp. Agric Biol Chem. 1991, 55: 2251-2258. 10.1271/bbb1961.55.2251. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3. Perez-Iratxeta C, Andrade-Navarro MA: K2D2: Estimate of protein secondary structure from circular dichroism spectra. BMC Struct Biol. 2007, 8: 25-32.