Differential expression of gill Na+,K+-ATPaseα- and β-subunits, Na+,K+,2Cl-cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmonSalmo salar

Journal of Experimental Biology - Tập 210 Số 16 - Trang 2885-2896 - 2007
Tom Ole Nilsen1, Lars O.E. Ebbesson1, Steffen S. Madsen2, S. D. McCormick3, Eva Andersson4, Björn Thrándur Björnsson5, Patrick Prunet6, Sigurd O. Stefansson1
1University of Bergen
2Institute of Biology
3United States Geological Survey
4Norwegian Institute of Marine Research
5Göteborgs Universitet = University of Gothenburg
6Station commune de Recherches en Ichtyophysiologie, Biodiversité et Environnement

Tóm tắt

SUMMARYThis study examines changes in gill Na+,K+-ATPase(NKA) α- and β-subunit isoforms,Na+,K+,2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, and after seawater (SW) transfer in May/June. Gill NKA activity increased from February through April, May and June among both strains in freshwater (FW),with peak enzyme activity in the landlocked salmon being 50% below that of the anadromous fish in May and June. Gill NKA-α1b, -α3,-β1 and NKCC mRNA levels in anadromous salmon increased transiently, reaching peak levels in smolts in April/May, whereas no similar smolt-related upregulation of these transcripts occurred in juvenile landlocked salmon. Gill NKA-α1a mRNA decreased significantly in anadromous salmon from February through June, whereas α1a levels in landlocked salmon, after an initial decrease in April, remained significantly higher than those of the anadromous smolts in May and June. Following SW transfer, gill NKA-α1b and NKCC mRNA increased in both strains, whereas NKA-α1a decreased. Both strains exhibited a transient increase in gill NKA α-protein abundance, with peak levels in May. Gill α-protein abundance was lower in SW than corresponding FW values in June. Gill NKCC protein abundance increased transiently in anadromous fish, with peak levels in May, whereas a slight increase was observed in landlocked salmon in May,increasing to peak levels in June. Gill CFTR I mRNA levels increased significantly from February to April in both strains, followed by a slight,though not significant increase in May and June. CFTR I mRNA levels were significantly lower in landlocked than anadromous salmon in April/June. Gill CFTR II mRNA levels did not change significantly in either strain. Our findings demonstrates that differential expression of gill NKA-α1a,-α1b and -α3 isoforms may be important for potential functional differences in NKA, both during preparatory development and during salinity adjustments in salmon. Furthermore, landlocked salmon have lost some of the unique preparatory upregulation of gill NKA, NKCC and, to some extent, CFTR anion channel associated with the development of hypo-osmoregulatory ability in anadromous salmon.

Từ khóa


Tài liệu tham khảo

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H.,Zhang, Z., Miller, W. and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.25,3389-3402.

Austreng, E., Storebakken, T. and Asgard, T.(1987). Growth-rate estimates for cultured Atlantic salmon and rainbow-trout. Aquaculture60,157-160.

Behnke, R. J. (1972). The systematics of salmonid fishes of recently glaciated lakes. J. Fish. Res. Board Can.29,639-671.

Berg, O. K. (1985). The formation of non-anadromous populations of Atlantic salmon, Salmo salar L., in Europe. J. Fish Biol.27,805-815.

Birt, T. P. and Green, J. M. (1993). Acclimation to seawater of dwarf nonanadromous Atlantic salmon, Salmo salar.Can. J. Zool.71,1912-1916.

Birt, T. P., Green, J. M. and Davidson, W. S.(1991). Contrasts in development and smolting of genetically distinct sympatric anadromous and nonanadromous Atlantic salmon, Salmo salar.Can. J. Zool.69,2075-2084.

Bjerknes, V., Duston, J., Knox, D. and Harmon, P.(1992). Importance of body size for acclimation of underyearling Atlantic salmon parr Salmo salar L. to seawater. Aquaculture104,357-366.

Blanco, G. and Mercer, R. W. (1998). Isozymes of the Na+-K+-ATPase: heterogeneity in structure,diversity in function. Am. J. Physiol.44,F633-F650.

Bystriansky, J. S., Richards, J. G., Schulte, P. M. and Ballantyne, J. S. (2006). Reciprocal expression of gill Na+/K+-ATPase α-subunit isoforms α-1a andα-1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J. Exp. Biol.209,1848-1858.

Chen, J. M., Cutler, C., Jacques, C., Boeuf, G., Denamur, E.,Lecointre, G., Mercier, B., Cramb, G. and Ferec, C. (2001). A combined analysis of the cystic fibrosis transmembrane conductance regulator:implications for structure and disease models. Mol. Biol. Evol.18,1771-1788.

Chomczynski, P. (1993). A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques15,532-537.

Crambert, G., Hasler, U., Beggah, A. T., Yu, C. L., Modyanov, N. N., Horisberger, J. D., Lelievre, L. and Geering, K. (2000). Transport and pharmacological properties of nine different human Na,K-ATPase isozymes. J. Biol. Chem.275,1976-1986.

Cutler, C. P. and Cramb, G. (2002). Two isoforms of the Na+/K+/2CI- cotransporter are expressed in the European eel (Anguilla anguilla). Biochim. Biophys. Acta Biomembr.1566,92-103.

Cutler, C. P., Brezillon, S., Bekir, S., Sanders, I. L., Hazon,N. and Cramb, G. (2000). Expression of a duplicate Na+,K+-ATPase β1-isoform in the European eel (Anguilla anguilla). Am. J. Physiol.279,R222-R229.

Dahl, K. (1928). The Blege or Dwarf-salmon: A Landlocked Salmon from Lake Bygglandsfiord in Setesdal (Norske videnskaps-akademi i Oslo. Skrifter. I. Matematisk-naturvidenskalpelig klasse). Oslo: Kommisjon Hos Jacob Dybwad.

D'Cotta, H., Valotaire, C., Le Gac, F. and Prunet, P.(2000). Synthesis of gill Na+-K+-ATPase in Atlantic salmon smolts: differences in α-mRNA and α-protein levels. Am. J. Physiol.278,R101-R110.

Deane, E. E. and Woo, N. Y. S. (2004). Differential gene expression associated with euryhalinity in sea bream(Sparus sarba). Am. J. Physiol.287,R1054-R1063.

Evans, D. H., Piermarini, P. M. and Choe, K. P.(2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev.85,97-177.

Feng, S. H., Leu, J. H., Yang, C. H., Fang, M. J., Huang, C. J. and Hwang, P. P. (2002). Gene expression of Na+-K+-ATPase α-1 and α-3 subunits in gills of the teleost Oreochromis mossambicus, adapted to different environmental salinities. Mar. Biotechnol.4, 379-391.

Gharbi, K., Semple, J. W., Ferguson, M. M., Schulte, P. M. and Danzmann, R. G. (2004). Linkage arrangement of Na, K-ATPase genes in the tetraploid-derived genome of the rainbow trout (Oncorhynchus mykiss). Anim. Genet.35,321-325.

Gharbi, K., Ferguson, M. M. and Danzmann, R. G.(2005). Characterization of Na, K-ATPase genes in Atlantic salmon(Salmo salar) and comparative genomic organization with rainbow trout(Oncorhynchus mykiss). Mol. Genet. Genomics273,474-483.

Handeland, S. O. and Stefansson, S. O. (2001). Photoperiod control and influence of body size on off-season parr-smolt transformation and post-smolt growth. Aquaculture192,291-307.

Hiroi, J. and McCormick, S. D. (2007). Variation in salinity tolerance, gill Na+/K+-ATPase,Na+/K+/2Cl(-) cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar.J. Exp. Biol.210,1015-1024.

Hirose, S., Kaneko, T., Naito, N. and Takei, Y.(2003). Molecular biology of major components of chloride cells. Comp. Biochem. Physiol.136B,593-620.

Hoar, W. S. (1988). The physiology of smolting salmonids. In The Physiology of Developing Fish, Part B, Viviparity and Posthatching Juveniles (Fish Physiology: Vol. XI) (ed. W. S. Hoar and D. J. Randall), pp. 275-343. San Diego:Academic Press.

Jewell, E. A. and Lingrel, J. B. (1991). Comparison of the substrate dependence properties of the rat Na, K-ATPaseα-1, α-2, and α-3 isoforms expressed in Hela-cells. J. Biol. Chem.266,16925-16930.

Johnston, I. A., Abercromby, M. and Andersen, O.(2005). Loss of muscle fibres in a landlocked dwarf Atlantic salmon population. Biol. Lett.1, 419-422.

Kolla, V., Robertson, N. M. and Litwack, G.(1999). Identification of a mineralocorticoid/glucocorticoid response element in the human Na/K ATPase α-1 gene promoter. Biochem. Biophys. Res. Commun.266, 5-14.

Lee, T. H., Tsai, J. C., Fang, M. J., Yu, M. J. and Hwang, P. P. (1998). Isoform expression of Na+-K+-ATPase α-subunit in gills of the teleost Oreochromis mossambicus.Am. J. Physiol.44,R926-R932.

Lee, T. H., Feng, S. H., Lin, C. H., Hwang, Y. H., Huang, C. L. and Hwang, P. P. (2003). Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus.Zool. Sci.20, 29-36.

Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods25,402-408.

Lytle, C., Xu, J., Biemesderfer, D. and Forbush, B., III(1995). Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am. J. Physiol.269,C1496-C1505.

Mackie, P., Wright, P. A., Glebe, B. D. and Ballantyne, J. S. (2005). Osmoregulation and gene expression of Na+/K+ ATPase in families of Atlantic salmon (Salmo salar) smolts. Can. J. Fish. Aquat. Sci.62,2661-2672.

Marshall, W. S. (2002). Na+,Cl-, Ca2+ and Zn2+ transport by fish gills:retrospective review and prospective synthesis. J. Exp. Zool.293,264-283.

McCormick, S. D. (1993). Methods for nonlethal gill biopsy and measurement of Na+, K+-ATPase activity. Can. J. Fish. Aquat. Sci.50,656-658.

McCormick, S. D. (1995). Hormonal control of gill Na+,K+-ATPase activity and chloride cell function. In Fish Physiology. Vol. 14(ed. C. M. Wood and T. J. Shuttleworth), pp. 285-315. San Diego, CA: Academic Press.

McCormick, S. D. (2001). Endocrine control of osmoregulation in teleost fish. Am. Zool.41,781-794.

McCormick, S. D. and Saunders, R. L. (1987). Preparatory physiological adaptations for marine life of salmonids:osmoregulation, growth, and metabolism. Am. Fish. Soc. Symp.1,211-229.

McCormick, S. D., Hansen, L. P., Quinn, T. P. and Saunders, R. L. (1998). Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci.55,77-92.

McDowall, R. M. (1988). Life history deviation and landlocking. In Diadromy in Fishes, Migrations Between Freshwater and Marine Environments, pp.171-185. London: Chapman & Hall.

Nilsen, T. O., Ebbesson, L. O. E. and Stefansson, S. O.(2003). Smolting in anadromous and landlocked strains of Atlantic salmon (Salmo salar). Aquaculture222, 71-82.

Olsvik, P. A., Lie, K. K., Jordal, A. E. O., Nilsen, T. O. and Hordvik, I. (2005). Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol. Biol.6,1-9.

Pelis, R. M., Zydlewski, J. and McCormick, S. D.(2001). Gill Na+-K+-2Cl-cotransporter abundance and location in Atlantic salmon: effects of seawater and smolting. Am. J. Physiol.280,R1844-R1852.

Power, G. (1958). The evolution of the freshwater races of the Atlantic salmon (Salmo salar L.). Arctic11,86-92.

Rajarao, S. J. R., Canfield, V. A., Mohideen, M., Yan, Y. L.,Postlethwait, J. H., Cheng, K. C. and Levenson, R. (2001). The repertoire of Na, K-ATPase α and β subunit genes expressed in the zebrafish, Danio rerio.Genome Res.11,1211-1220.

Richards, J. G., Semple, J. W., Bystriansky, J. S. and Schulte,P. M. (2003). Na+/K+-ATPaseα-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J. Exp. Biol.206,4475-4486.

Sakamoto, T., Uchida, K. and Yokota, S. (2001). Regulation of the ion-transporting mitochondrion-rich cell during adaptation of teleost fishes to different salinities. Zool. Sci.18,1163-1174.

Schmitz, M. (1995). Seasonal changes in hypoosmoregulatory ability in landlocked and anadromous populations of Arctic charr, Salvelinus alpinus, and Atlantic salmon, Salmo salar.Environ. Biol. Fishes42,401-412.

Scott, G. R., Richards, J. G., Forbush, B., Isenring, P. and Schulte, P. M. (2004a). Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol.287,C300-C309.

Scott, G. R., Rogers, J. T., Richards, J. G., Wood, C. A. and Schulte, P. M. (2004b). Intraspecific divergence of ionoregulatory physiology in the euryhaline teleost Fundulus heteroclitus: possible mechanisms of freshwater adaptation. J. Exp. Biol.207,3399-3410.

Seidelin, M., Madsen, S. S., Cutler, C. P. and Cramb, G.(2001). Expression of gill vacuolar-type H+-ATPaseβ subunit, and Na+, K+-ATPase α1and β1 subunit messenger RNAs in smolting Salmo salar.Zool. Sci.18,315-324.

Singer, T. D., Clements, K. M., Semple, J. W., Schulte, P. M.,Bystriansky, J. S., Finstad, B., Fleming, I. A. and McKinley, R. S.(2002). Seawater tolerance and gene expression in two strains of Atlantic salmon smolts. Can. J. Fish. Aquat. Sci.59,125-135.

Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K.,Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem.150, 76-85.

Staurnes, M., Lysfjord, G. and Berg, O. K.(1992). Parr-smolt transformation of a nonanadromous population of Atlantic salmon (Salmo salar) in Norway. Can. J. Zool.70,197-199.

Stefansson, S. O., Nilsen, T. O., Ebbesson, L. O. E., Wargelius,A., Madsen, S. S., Björnsson, B. Th. and McCormick, S. D.(2007). Molecular mechanisms of continuous light inhibition of Atlantic salmon parr-smolt transformation. Aquaculture(In press).

Takeyasu, K., Lemas, V. and Fambrough, D. M.(1990). Stability of Na+-K+-ATPaseα-subunit isoforms in evolution. Am. J. Physiol.259,C619-C630.

Therien, A. G. and Blostein, R. (2000). Mechanisms of sodium pump regulation. Am. J. Physiol.279,C541-C566.

Thompson, J. D., Higgins, D. G. and Gibson, T. J.(1994). Clustal-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22,4673-4680.

Thorpe, J. E., Morgan, R. I. G., Ottway, E. M. and Miles, M. S. (1980). Time divergence of growth groups between potential 1+ and 2+ smolts among sibling Atlantic salmon. J. Fish Biol.17,13-21.

Tipsmark, C. K. and Madsen, S. S. (2001). Rapid modulation of Na+/K+-ATPase activity in osmoregulatory tissues of a salmonid fish. J. Exp. Biol.204,701-709.

Tipsmark, C. K., Madsen, S. S., Seidelin, M., Christensen, A. S., Cutler, C. P. and Cramb, G. (2002). Dynamics of Na+,K+,2Cl- cotransporter and Na+,K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). J. Exp. Zool.293,106-118.

Zar, J. H. (1996). Biostatistical Analysis (3rd edn). Upper Saddle River, NJ: Prentice Hall.

Zaugg, W. S. (1982). A simplified preparation for adenosine triphosphatase determination in gill tissue. Can. J. Fish. Aquat. Sci.39,215-217.