Differential exosome miRNA expression in oral cancer stem cells

ExRNA - 2020
M. Shoff1, Timberly Booker1, Blair R. Leavitt1, David C. Harmon1, Karl Kingsley2, Katherine M. Howard2
1Department of Clinical Sciences, University of Nevada, Las Vegas – School of Dental Medicine, Las Vegas, USA
2Department of Biomedical Sciences, University of Nevada, Las Vegas – School of Dental Medicine, Las Vegas, USA

Tóm tắt

Abstract Background Oral squamous cell carcinomas (OSCC) secrete exosomes into the surrounding extracellular environment to promote the horizontal transfer of bioactive molecules including microRNA (miRNA). The primary objective of this study was to explore potential differences in miRNA content between OSCC and OSCC stem cells. Methods The OSCC cell lines SCC4, SCC15, SCC25 and CAL27 were used in these studies. The corresponding OSCC stem cells that demonstrated phenotypic adhesion independent tumor spheres (AiTS) were manually isolated. All cells were cultured in DMEM containing 10% exosome-free fetal bovine serum. Exosomes were isolated using Total Exosome Isolation reagent (Invitrogen) and RNA was purified using Total Exosome RNA isolation kit (Invitrogen). Exosome miRNA content was evaluated using miRNA Advanced Taqman Assays for miR-21, − 155, − 133, − 34, − 31, − 32, and − 365. The fold change of miRNA content was calculated using the comparative CT (ΔΔCT) method using miR-16 as an endogenous control. Results After successful cell cultures were established, AiTS (cancer stem cells) were manually separated and confirmed using CD133 and Sox-2 biomarkers. Exosomes and extracellular vesicles were successfully isolated from all cell lines and AiTS isolates for miRNA screening. All isolates exhibited miR-16 expression (positive control), but none contained mir-31, − 32, or 133a. Differential expression of miR-21, miR-34 and miR-155 were observed with patterns observed among the cancer cell lines which were distinct from the corresponding AiTS isolates. Conclusions Exosomes isolated from these different OSCC stem cell populations displayed nearly consistent downregulation/loss of miR-21 and miR-34 suggesting the possibility of a unique miRNA profile characteristic of oral cancer stem cells. These findings highlight the need to investigate the comprehensive functions of miR-21 and miR-34 in tumor progression and continued research to refine a miRNA profile that could aid in distinguishing tumors with poor prognosis.

Từ khóa


Tài liệu tham khảo

Claros MP, Messa CVM, García-Perdomo HA. Adherence to oral pharmacological treatment in cancer patients: systematic review. Oncol Rev. 2019;13(1):402. https://doi.org/10.4081/oncol.2019.402. eCollection 2019 Jan 14 PMID: 31044026.

PDQ Supportive and Palliative Care Editorial Board. Oral Complications of Chemotherapy and Head/Neck Radiation (PDQ®): Patient Version. PDQ Cancer Information Summaries. Bethesda: National Cancer Institute (US); 2002-. 2019. PMID: 26389169

Shin KH, Kim RH. An updated review of Oral Cancer stem cells and their Stemness regulation. Crit Rev Oncog. 2018;23(3–4):189–200. https://doi.org/10.1615/CritRevOncog.2018027501 PMID: 30311574.

Zhang S, Yang X, Wang L, Zhang C. Interplay between inflammatory tumor microenvironment and cancer stem cells. Oncol Lett. 2018;16(1):679–86. https://doi.org/10.3892/ol.2018.8716 Epub 2018 May 16. Review. PMID: 29963133.

Curtarelli RB, Gonçalves JM, Dos Santos LGP, Savi MG, Nör JE, Mezzomo LAM, Rodríguez Cordeiro MM. Expression of Cancer stem cell biomarkers in human head and neck carcinomas: a systematic review. Stem Cell Rev. 2018;14(6):769–84. https://doi.org/10.1007/s12015-018-9839-4 PMID: 30076557.

Mohajertehran F, Sahebkar A, Zare R, Mohtasham N. The promise of stem cell markers in the diagnosis and therapy of epithelial dysplasia and oral squamous cell carcinoma. J Cell Physiol. 2018;233(11):8499–507. https://doi.org/10.1002/jcp.26789 Epub 2018 May 24. Review. PMID: 29797575.

Dharmawardana N, Ooi EH, Woods C, Hussey D. Circulating microRNAs in head and neck cancer: a scoping review of methods. Clin Exp Metastasis. 2019;36(3):291–302. https://doi.org/10.1007/s10585-019-09961-6 Epub 2019 Mar 14. PMID: 30877500.

Mazumder S, Datta S, Ray JG, Chaudhuri K, Chatterjee R. Liquid biopsy: miRNA as a potential biomarker in oral cancer. Cancer Epidemiol. 2019;58:137–45. https://doi.org/10.1016/j.canep.2018.12.008 Epub 2018 Dec 19. Review. PMID: 30579238.

Harrandah AM, Mora RA, Chan EKL. Emerging microRNAs in cancer diagnosis, progression, and immune surveillance. Cancer Lett. 2018;438:126–32. https://doi.org/10.1016/j.canlet.2018.09.019 Epub 2018 Sep 17. PMID: 30237038.

Olatunji I. Potential application of tumor suppressor microRNAs for targeted therapy in head and neck cancer: a mini-review. Oral Oncol. 2018;87:165–9. https://doi.org/10.1016/j.oraloncology.2018.10.038 Epub 2018 Nov 9. Review. PMID: 30527233.

Cao Y, Green K, Quattlebaum S, Milam B, Lu L, Gao D, He H, Li N, Gao L, Hall F, Whinery M, Handley E, Ma Y, Xu T, Jin F, Xiao J, Wei M, Smith D, Bornstein S, Gross N, Pyeon D, Song J, Lu SL. Methylated genomic loci encoding microRNA as a biomarker panel in tissue and saliva for head and neck squamous cell carcinoma. Clin Epigenetics. 2018;10:43. https://doi.org/10.1186/s13148-018-0470-7 eCollection 2018. PMID: 29636832.

Troiano G, Mastrangelo F, Caponio VCA, Laino L, Cirillo N, Lo ML. Predictive prognostic value of tissue-based MicroRNA expression in Oral squamous cell carcinoma: a systematic review and meta-analysis. J Dent Res. 2018;97(7):759–66. https://doi.org/10.1177/0022034518762090 Epub 2018 Mar 13. PMID: 29533734.

Irimie AI, Ciocan C, Gulei D, Mehterov N, Atanasov AG, Dudea D, Berindan-Neagoe I. Current Insights into Oral Cancer Epigenetics. Int J Mol Sci. 2018;19(3). doi: https://doi.org/10.3390/ijms19030670. Review. PMID: 29495520

Ramassone A, Pagotto S, Veronese A, Visone R. Epigenetics and MicroRNAs in Cancer. Int J Mol Sci. 2018;19(2). doi: https://doi.org/10.3390/ijms19020459. Review. PMID: 29401683

Cao M, Zheng L, Liu J, Dobleman T, Hu S, Go VLW, Gao G, Xiao GG. MicroRNAs as effective surrogate biomarkers for early diagnosis of oral cancer. Clin Oral Investig. 2018;22(2):571–81. https://doi.org/10.1007/s00784-017-2317-6 Epub 2018 Jan 3. Review. PMID: 29299731.

Dumache R. Early diagnosis of Oral squamous cell carcinoma by salivary microRNAs. Clin Lab. 2017;63(11):1771–6. https://doi.org/10.7754/Clin.Lab.2017.170607 Review. PMID: 29226639.

Petersen B, Kingsley K. Differential expression of miR-21, miR-133 and miR-155 from exosome fractions isolated from oral squamous cell carcinomas in vitro. J Med Discov. 2016;1(1):jmd6010.

Hunsaker M, Barba G, Kingsley K, Howard KM. Differential MicroRNA Expression of miR-21 and miR-155 within Oral Cancer Extracellular Vesicles in Response to Melatonin. Dent J (Basel). 2019;7(2). doi: https://doi.org/10.3390/dj7020048. PMID: 31052365

Harper LJ, Piper K, Common J, Fortune F, Mackenzie IC. Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med. 2007;36(10):594–603 PMID: 17944752.

Kendall K, Repp MR, Jilka T, Kingsley K. Biomarker screening of oral cancer cell lines revealed sub-populations of CD133-, CD44-, CD24-. And ALDH1- positive cancer stem cells. J Cancer Res Therapy. 2013;1(3):111–8.

Hao J, Zhao S, Zhang Y, Zhao Z, Ye R, Wen J, Li J. Emerging role of microRNAs in cancer and cancer stem cells. J Cell Biochem. 2014;115(4):605–10. https://doi.org/10.1002/jcb.24702 Review. PMID: 24166873.

Takahashi RU, Miyazaki H, Ochiya T. The role of microRNAs in the regulation of cancer stem cells. Front Genet. 2014;4:295. https://doi.org/10.3389/fgene.2013.00295 Review. PMID: 24427168.

Fanale D, Barraco N, Listì A, Bazan V, Russo A. Non-coding RNAs functioning in colorectal Cancer stem cells. Adv Exp Med Biol. 2016;937:93–108. https://doi.org/10.1007/978-3-319-42059-2_5 Review. PMID: 27573896.

Sheng SR, Wu JS, Tang YL, Liang XH. Long noncoding RNAs: emerging regulators of tumor angiogenesis. Future Oncol. 2017;13(17):1551–62. https://doi.org/10.2217/fon-2017-0149 Epub 2017 May 17. Review. PMID: 28513194.

Sahay S, Tiwari P, Pandey M, Gupta KP. PI3K/Akt pathway and miR-21 are involved in N-ethyl-N-Nitrosourea-induced F1 mouse lung tumorigenesis: effect of inositol Hexaphosphate. J Environ Pathol Toxicol Oncol. 2019;38(1):69–81. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026684 PMID: 30806292.

Kowshik J, Nivetha R, Ranjani S, Venkatesan P, Selvamuthukumar S, Veeravarmal V, Nagini S. Astaxanthin inhibits hallmarks of cancer by targeting the PI3K/NF-κΒ/STAT3 signalling axis in oral squamous cell carcinoma models. IUBMB Life. 2019. doi: https://doi.org/10.1002/iub.2104. [Epub ahead of print] PMID: 31251469.

Qiu YF, Wang MX, Meng LN, Zhang R, Wang W. MiR-21 regulates proliferation and apoptosis of oral cancer cells through TNF-α. Eur Rev Med Pharmacol Sci. 2018 ;22(22):7735–7741. doi: https://doi.org/10.26355/eurrev_201811_16395. PMID: 30536317

Bano N, Yadav M, Mohania D, Das BC. The role of NF-κB and miRNA in oral cancer and cancer stem cells with or without HPV16 infection. PLoS One. 2018;13(10):e0205518. https://doi.org/10.1371/journal.pone.0205518 eCollection 2018. PMID: 30372446.

Cha YH, Kim NH, Park C, Lee I, Kim HS, Yook JI. MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle. 2012;11(7):1273–81. https://doi.org/10.4161/cc.19618 Epub 2012 Apr 1. PMID: 22421157.

Kim NH, Cha YH, Kang SE, Lee Y, Lee I, Cha SY, Ryu JK, Na JM, Park C, Yoon HG, Park GJ, Yook JI, Kim HS. p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells. Cell Cycle. 2013;12(10):1578–87. https://doi.org/10.4161/cc.24739 Epub 2013 Apr 25. PMID: 23624843.

Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, Kang SE, Cha SY, Ryu JK, Na JM, Park C, Kim K, Lee S, Gumbiner BM, Yook JI, Weiss SJ. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal. 2011;4(197):ra71. https://doi.org/10.1126/scisignal.2001744 PMID: 22045851.

Brito BL, Lourenço SV, Damascena AS, Kowalski LP, Soares FA, Coutinho-Camillo CM. Expression of stem cell-regulating miRNAs in oral cavity and oropharynx squamous cell carcinoma. J Oral Pathol Med. 2016;45(9):647–54. https://doi.org/10.1111/jop.12424 Epub 2016 Feb 3. PMID: 26841253.

Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat. 2014;35(6):672–88 PMID: 24665023.

Leroy B, Ballinger ML, Baran-Marszak F, Bond GL, Braithwaite A, Concin N, Donehower LA, El-Deiry WS, Fenaux P, Gaidano G, Langerød A, Hellstrom-Lindberg E, Iggo R, Lehmann-Che J, Mai PL, Malkin D, Moll UM, Myers JN, Nichols KE, Pospisilova S, Ashton-Prolla P, Rossi D, Savage SA, Strong LC, Tonin PN, Zeillinger R, Zenz T, Fraumeni JF Jr, Taschner PE, Hainaut P, Soussi T. Recommended Guidelines for Validation, Quality Control, and Reporting of TP53 Variants in Clinical Practice. Cancer Res. 2017;77(6):1250–60 Review. PMID: 28254861.

Zeng Q, Tao X, Huang F, Wu T, Wang J, Jiang X, Kuang Z, Cheng B. Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2. Int J Mol Med. 2016;37(5):1274–80. https://doi.org/10.3892/ijmm.2016.2529 Epub 2016 Mar 16. PMID: 26986233.

Fu S, Chen HH, Cheng P, Zhang CB, Wu Y. MiR-155 regulates oral squamous cell carcinoma Tca8113 cell proliferation, cycle, and apoptosis via regulating p27Kip1. Eur Rev Med Pharmacol Sci. 2017;21(5):937–44 PMID: 28338203.

Baba O, Hasegawa S, Nagai H, Uchida F, Yamatoji M, Kanno NI, Yamagata K, Sakai S, Yanagawa T, Bukawa H. MicroRNA-155-5p is associated with oral squamous cell carcinoma metastasis and poor prognosis. J Oral Pathol Med. 2016;45(4):248–55. https://doi.org/10.1111/jop.12351 Epub 2015 Aug 26. PMID: 26307116.

Jakob M, Mattes LM, Küffer S, Unger K, Hess J, Bertlich M, Haubner F, Ihler F, Canis M, Weiss BG, Kitz J. MicroRNA expression patterns in oral squamous cell carcinoma: hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer. Head Neck. 2019. doi: https://doi.org/10.1002/hed.25866. [Epub ahead of print] PMID: 31355988.