Differential effects of climate and species interactions on range limits at a hybrid zone: potential direct and indirect impacts of climate change

Ecology and Evolution - Tập 5 Số 21 - Trang 5120-5137 - 2015
Michael A McQuillan1, Amber M. Rice1
1Department of Biological Sciences Lehigh University 111 Research Drive Bethlehem Pennsylvania 18015

Tóm tắt

AbstractThe relative contributions of climate versus interspecific interactions in shaping species distributions have important implications for closely related species at contact zones. When hybridization occurs within a contact zone, these factors regulate hybrid zone location and movement. While a hybrid zone's position may depend on both climate and interactions between the hybridizing species, little is known about how these factors interact to affect hybrid zone dynamics. Here, we utilize SDM (species distribution modeling) both to characterize the factors affecting the current location of a moving North American avian hybrid zone and to predict potential direct and indirect effects of climate change on future distributions. We focus on two passerine species that hybridize where their ranges meet, the Black‐capped (Poecile atricapillus) and Carolina (P. carolinensis) chickadee. Our contemporary climate models predict the occurrence of climatically suitable habitat extending beyond the hybrid zone forP. atricapillusonly, suggesting that interspecific interactions primarily regulate this range boundary inP. atricapillus, while climatic factors regulateP. carolinensis. Year 2050 climate models predict a drastic northward shift in suitable habitat forP. carolinensis. Because of the greater importance of interspecific interactions for regulating the southern range limit ofP. atricapillus, these climate‐mediated shifts in the distribution ofP. carolinensismay indirectly lead to a range retraction inP. atricapillus. Together, our results highlight the ways climate change can both directly and indirectly affect species distributions and hybrid zone location. In addition, our study lends support to the longstanding hypothesis that abiotic factors regulate species' poleward range limits, while biotic factors shape equatorial range limits.

Từ khóa


Tài liệu tham khảo

10.1111/j.1420-9101.2012.02599.x

10.1038/hdy.2014.64

10.2307/1369210

10.1034/j.1600-0706.2002.t01-1-980116.x

10.1111/j.1365-2486.2005.01000.x

Arif S., 2007, Bioclimatic modelling, morphology, and behaviour reveal alternative mechanisms regulating the distributions of two parapatric salamander species, Evol. Ecol. Res., 9, 843

10.1046/j.1365-294x.2001.01216.x

10.1146/annurev.es.16.110185.000553

10.1038/341497a0

10.1007/s12080-011-0118-0

10.1111/j.1558-5646.1995.tb02240.x

10.1016/j.ecolmodel.2013.12.012

10.1046/j.1365-294x.2001.01215.x

10.1006/anbe.2003.2103

10.1111/j.0014-3820.2003.tb01554.x

10.1642/0004-8038(2005)122[0759:RSATBC]2.0.CO;2

10.1111/2041-210X.12200

10.1038/sj.hdy.6800997

10.1111/j.1600-0587.2000.tb00281.x

10.1111/jbi.12231

10.1086/303351

10.1111/j.0030-1299.2005.13148.x

10.1126/science.1206432

10.1002/ece3.1052

Cicero C., 2004, Barriers to sympatry between avian sibling species (Paridae: Baeolophus) in local secondary contact, Evolution, 58, 1573

10.5194/gmd-4-1051-2011

10.2307/1933500

10.1111/j.1365-2656.2008.01468.x

Cunningham H. R., 2015, Abiotic and biotic constraints across reptile and amphibian ranges, Ecography, 38, 1

10.1093/acprof:oso/9780198569992.003.0008

10.1111/jeb.12178

10.1146/annurev.ecolsys.110308.120159

10.1111/j.2006.0906-7590.04596.x

10.1111/j.2041-210X.2010.00036.x

10.1111/j.1472-4642.2010.00725.x

Endler J. A., 1977, Geographic variation, speciation, and clines. monographs in population biology 10

10.1111/jeb.12244

10.1676/08-005.1

10.1017/S0376892997000088

10.1371/journal.pone.0097122

10.1017/CBO9780511810602

10.1111/j.1365-2486.2009.01948.x

10.1186/1471-2148-6-96

Goldberg E. E., 2006, Ecological and reproductive character displacement on an environmental gradient, Evolution, 60, 1344

10.1098/rstb.2009.0283

10.1086/590510

10.1111/ecog.00620

10.1086/674525

10.1016/j.cub.2014.02.023

10.1111/evo.12280

10.1098/rstb.2003.1388

10.1111/j.1365-2486.2006.01256.x

10.1002/joc.1276

10.1038/nature09670

10.1101/SQB.1957.022.01.039

IPCC, 2013, Climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change

10.1890/09-2063.1

10.5194/gmd-4-543-2011

10.1023/B:COGE.0000041027.64785.77

10.2307/4088764

10.1093/genetics/153.4.1959

10.2307/1369949

10.1111/j.0906-7590.2005.03957.x

MacArthur R. H., 1972, Geographical ecology: patterns in the distribution of species

10.1093/condor/106.1.5

10.1007/s10584-011-0156-z

10.1086/409995

Moore W. S., 1993, Hybrid zones and the evolutionary process, 196, 10.1093/oso/9780195069174.003.0008

10.1371/journal.pbio.1001685

10.1086/648395

10.2307/4089369

10.1146/annurev.ecolsys.37.091305.110100

10.1016/j.ecolmodel.2005.03.026

10.1890/07-2153.1

Price T., 2008, Speciation in birds

10.1642/0004-8038(2007)124[463:SADOTH]2.0.CO;2

10.1111/j.1466-8238.2009.00477.x

10.2307/1940431

10.2307/2845278

10.1146/annurev.ecolsys.39.110707.173430

10.1111/j.1744-7917.2010.01367.x

10.1146/annurev.ecolsys.34.011802.132412

10.1146/annurev.ecolsys.110308.120317

10.1016/j.tree.2009.03.017

Smith S. M., 1991, The black‐capped chickadee: behavioral ecology and natural history

10.1111/evo.12140

10.1016/j.biocon.2009.05.006

10.1016/j.biocon.2013.11.003

10.1111/j.1420-9101.2005.01066.x

10.1111/j.1420-9101.2007.01487.x

10.1086/491688

10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E

10.1890/0012-9658(2000)081[2027:CSCIFT]2.0.CO;2

10.1111/j.1365-294X.2005.02794.x

10.1016/j.cub.2014.01.069

10.1111/evo.12510

10.1016/j.tree.2015.04.010

10.1101/gr.6757907

10.1111/j.1472-4642.2010.00642.x

10.1111/j.1365-2699.2009.02174.x

10.1111/j.1469-185X.2012.00235.x

10.1111/2041-210x.12004