Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
Tóm tắt
Từ khóa
Tài liệu tham khảo
Y Liao, 2014, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features., Bioinformatics., 30, 923-30, 10.1093/bioinformatics/btt656
S Anders, 2015, HTSeq - a Python framework to work with high-throughput sequencing data., Bioinformatics., 31, 166-169, 10.1093/bioinformatics/btu638
C Trapnell, 2012, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks., Nat Protoc., 7, 562-78, 10.1038/nprot.2012.016
B Li, 2011, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome., BMC Bioinformatics., 12, 323, 10.1186/1471-2105-12-323
P Glaus, 2012, Identifying differentially expressed transcripts from RNA-seq data with biological variation., Bioinformatics., 28, 1721-1728, 10.1093/bioinformatics/bts260
N Bray, 2015, Near-optimal RNA-Seq quantification., arXiv:1505.02710.
R Patro, 2015, Accurate, fast, and model-aware transcript expression quantification with Salmon., bioRxiv., 10.1101/021592
A Mortazavi, 2008, Mapping and quantifying mammalian transcriptomes by RNA-Seq., Nat Methods., 5, 621-628, 10.1038/nmeth.1226
C Trapnell, 2010, Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation., Nat Biotechnol., 28, 511-515, 10.1038/nbt.1621
G Wagner, 2012, Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples., Theory Biosci., 131, 281-285, 10.1007/s12064-012-0162-3
M Love, 2014, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2., Genome Biol., 15, 550, 10.1186/s13059-014-0550-8
M Robinson, 2010, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data., Bioinformatics., 26, 139-40, 10.1093/bioinformatics/btp616
M Ritchie, 2015, limma powers differential expression analyses for RNA-sequencing and microarray studies., Nucleic Acids Res., 43, e47, 10.1093/nar/gkv007
D Bottomly, 2011, Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays., PLoS One., 6, e17820, 10.1371/journal.pone.0017820
S Yang, 2015, Common and specific downstream signaling targets controlled by Tlr2 and Tlr5 innate immune signaling in zebrafish., BMC Genomics., 16, 547, 10.1186/s12864-015-1740-9
A Currais, 2015, A comprehensive multiomics approach toward understanding the relationship between aging and dementia., Aging (Albany. NY)., 7, 937-955
A Chang, 2015, Oxygen regulation of breathing through an olfactory receptor activated by lactate., Nature., 527, 240-244, 10.1038/nature15721
C Soneson, 2015, Differential transcript usage from RNA-seq data: isoform pre-filtering improves performance of count-based methods., bioRxiv., 10.1101/025387
A Kanitz, 2015, Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data., Genome Biol., 16, 150, 10.1186/s13059-015-0702-5
C Robert, 2015, Errors in RNA-Seq quantification affect genes of relevance to human disease., Genome Biol., 16, 177, 10.1186/s13059-015-0734-x
S Anders, 2012, Detecting differential usage of exons from RNA-seq data., Genome Res., 22, 2008-17, 10.1101/gr.133744.111
M Lawrence, 2013, Software for computing and annotating genomic ranges., PLoS Comput Biol., 9, e1003118, 10.1371/journal.pcbi.1003118
C Trapnell, 2013, Differential analysis of gene regulation at transcript resolution with RNA-seq., Nat Biotechnol., 31, 46-53, 10.1038/nbt.2450
S Zhao, 2015, Union Exon Based Approach for RNA-Seq Gene Quantification: To Be or Not to Be?, PLoS One., 10, e0141910, 10.1371/journal.pone.0141910
M Gonzàlez-Porta, 2013, Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene., Genome Biol., 14, R70, 10.1186/gb-2013-14-7-r70
E Antonarakis, 2014, AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer., N Engl J Med., 371, 1028-38, 10.1056/NEJMoa1315815
M Love, 2015, Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation., bioRxiv., 10.1101/025767
C Soneson, 2015, Data set 1 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences., F1000Research., 10.5256/f1000research.7563.d109328
C Soneson, 2015, Data set 2 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences., F1000Research., 10.5256/f1000research.7563.d109329
C Soneson, 2015, Data set 3 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences., F1000Research., 10.5256/f1000research.7563.d109330
C Soneson, 2015, Data set 4 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences., F1000Research., 10.5256/f1000research.7563.d109331
C Soneson, 2015, Data set 5 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences., F1000Research., 10.5256/f1000research.7563.d109332