Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích sự phân bố DNA methylome khác biệt ở các khối u tuyến yên không hoạt động cho thấy sự xâm lấn của khối u có liên quan đến sự bám dính của tế bào
Tóm tắt
Những thay đổi toàn cầu và gene đặc hiệu đối với epigenome là những dấu hiệu đặc trưng của hầu hết các khối u, bao gồm cả các khối u có nguồn gốc từ tuyến yên, và thực tế này có thể cung cấp những gợi ý quan trọng về ứng dụng chẩn đoán và điều trị. Chúng tôi đã thực hiện sàng lọc DNA methylation toàn cầu với 6 khối u tuyến yên xâm lấn và 6 khối u tuyến yên không xâm lấn không hoạt động (PA) để điều tra xem DNA methylation có liên quan đến sự xâm lấn của các khối u tuyến yên không hoạt động hay không. Bảy PA bổ sung đã được đưa vào như một nhóm độc lập để xác thực các kết quả ban đầu. Năm nghìn chín trăm ba mươi một CpGs đã được chọn (△β ≥0.15 và giá trị p ≤0.01) làm các vị trí methyl hóa khác biệt (DMSs). Các DMSs bị hypomethyl hóa trong các PA xâm lấn nhiều hơn đáng kể so với các vị trí hypermethylated. Phân tích cụm của 339 CpGs (△β ≥0.25 và giá trị p ≤0.001) cho thấy sự phân biệt hoàn toàn giữa các nhóm không xâm lấn và xâm lấn. Phân tích GO của ba trăm bảy gene tương ứng cho thấy chúng tham gia vào sự bám dính tế bào đồng loại, bám dính tế bào-tế bào, bám dính tế bào và bám dính sinh học. Mức biểu hiện mRNA của GALNT9, gene có chứa một DMS đã được xác thực, giảm đáng kể trong nhóm xâm lấn. Phát hiện của chúng tôi cho thấy sự phân tích DNA methylome khác biệt giữa các PA xâm lấn và không xâm lấn không hoạt động cho thấy sự xâm lấn khối u có tương quan với sự bám dính tế bào.
Từ khóa
#DNA methylation #khối u tuyến yên #sự bám dính tế bào #DMSs #phân tích GO.Tài liệu tham khảo
Aflorei ED, Korbonits M (2014) Epidemiology and etiopathogenesis of pituitary adenomas. J Neurooncol 117:379–394
Asa SL, Ezzat S (2009) The pathogenesis of pituitary tumors. Annu Rev Pathol 4:97–126
Berois N et al (2013) GALNT9 gene expression is a prognostic marker in neuroblastoma patients. Clin Chem 59:225–233
Canel M et al (2013) E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126:393–401
Capatina C et al (2013) Current treatment protocols can offer a normal or near-normal quality of life in the majority of patients with non-functioning pituitary adenomas. Clin Endocrinol (Oxf) 78:86–93
Cavallaro U, Christofori G (2001) Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim Biophys Acta 1552:39–45
Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132
Chiloiro S et al (2014) Radically resected pituitary adenomas: prognostic role of Ki 67 labeling index in a monocentric retrospective series and literature review. Pituitary 17:267–276
Craig SEL, Brady-Kalnay SM (2011) Cancer cells cut homophilic cell adhesion molecules and run. Cancer Res 71:303–309
Duong CV et al (2012) Quantitative, genome-wide analysis of the DNA methylome in sporadic pituitary adenomas. Endocr Relat Cancer 19:805–816
Dudley KJ et al (2009) Pituitary tumours: all silent on the epigenetics front. J Mol Endocrinol 42:461–468
Elston MS et al (2009) Nuclear accumulation of e-cadherin correlates with loss of cytoplasmic membrane staining and invasion in pituitary adenomas. J Clin Endocrinol Metab 94:1436–1442
Galland F et al (2010) Differential gene expression profiles of invasive and non-invasive non-functioning pituitary adenomas based on microarray analysis. Endocr Relat Cancer 17:361–371
Gejman R et al (2008) Role of Ki-67 proliferation index and p53 expression in predicting progression of pituitary adenomas. Hum Pathol 39:758–766
Greenman Y, Stern N (2009) Non-functioning pituitary adenomas. Best Pract Res Clin Endocrinol Metab 23:625–638
Hong L et al (2014) Overexpression of the cell adhesion molecule claudin-9 is associated with invasion in pituitary oncocytomas. Human Pathology
Knappe UJ et al (2009) Medial wall of the cavernous sinus: microanatomical diaphanoscopic and episcopic investigation. Acta Neurochir (Wien) 151(961–967):967
Knosp E et al (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33(610–617):617–618
Ling C et al (2014) A pilot genome-scale profiling of DNA methylation in sporadic pituitary macroadenomas: association with tumor invasion and histopathological subtype. PLoS One 9:e96178
Malik MT, Kakar SS (2006) Regulation of angiogenesis and invasion by human Pituitary tumor transforming gene (PTTG) through increased expression and secretion of matrix metalloproteinase-2 (MMP-2). Mol Cancer 5:61
Marianne S et al (2009) Nuclear accumulation of E-cadherin correlates with loss of cytoplasmic membrane staining and invasion in pituitary adenomas. J Clin Endocrinol Metab 94:1436–1442
Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Investig 112:1603–1618
Minematsu T et al (2006) PTTG overexpression is correlated with angiogenesis in human pituitary adenomas. Endocr Pathol 17:143–153
Mohammad TM, Sham SK (2006) Regulation of angiogenesis and invasion by human Pituitary tumor transforming gene (PTTG) through increased expression and secretion of matrix metalloproteinase-2 (MMP-2). Mol Cancer 5:61–74
Pease M et al (2013) The role of epigenetic modification in tumorigenesis and progression of pituitary adenomas: a systematic review of the literature. PLoS One 8:e82619
Qian ZR et al (2007) Tumor-specific downregulation and methylation of the CDH13 (H-cadherin) and CDH1 (E-cadherin) genes correlate with aggressiveness of human pituitary adenomas. Mod Pathol 20:1269–1277
Raverot G et al (2014) Management of endocrine disease: clinicopathological classification and molecular markers of pituitary tumours for personalized therapeutic strategies. Eur J Endocrinol 170:R121–R132
Rogers A et al (2014) Diagnosis and management of prolactinomas and non-functioning pituitary adenomas. BMJ 349:g5390
Sakamoto S et al (2010) Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Res 70:1885–1895
Salehi F et al (2009) Ki-67 in pituitary neoplasms: a review–part I. Neurosurgery 65(429–437):437
Salehi F et al (2010) Biomarkers of pituitary neoplasms: a review (Part II). Neurosurgery 67(1790–1798):1798
Sav A et al (2012) Biomarkers of pituitary neoplasms. Anticancer Res 32:4639–4654
Songtao Q et al (2009) Membranous layers of the pituitary gland: histological anatomic study and related clinical issues. Neurosurgery 64 s1-s9, s9-s10
Trojani A et al (2011) Gene expression profiling identifies ARSD as a new marker of disease progression and the sphingolipid metabolism as a potential novel metabolism in chronic lymphocytic leukemia. Cancer Biomark 11:15–28
Trouillas J et al (2003) Polysialylated neural cell adhesion molecules expressed in human pituitary tumors and related to extrasellar invasion. J Neurosurg 98:1084–1093
Turner HE, Wass JA (1999) Are markers of proliferation valuable in the histological assessment of pituitary tumours? Pituitary 1:147–151
Valavanis I et al (2014) A composite framework for the statistical analysis of epidemiological DNA methylation data with the Infinium Human Methylation 450 K BeadChip. IEEE J Biomed Health Inform 18:817–823
Wilson CB (1979) Neurosurgical management of large and invasive pituitary tumours. In: Clinical management of pituitary disorders, Eds Tindall G T & Collins W F. New York: Raven Press, pp 335–342
Yacqub-Usman K et al (2012) The pituitary tumour epigenome: aberrations and prospects for targeted therapy. Nat Rev Endocrinol 8:486–494
Yasuda A et al (2004) The medial wall of the cavernous sinus: microsurgical anatomy. Neurosurgery 55(179–189):189–190
