Differences in Cortical Representation and Structural Connectivity of Hands and Feet between Professional Handball Players and Ballet Dancers

Neural Plasticity - Tập 2016 - Trang 1-17 - 2016
Jessica Meier1, Marlene Sofie Topka1, Jürgen Hänggi1
1Division Neuropsychology, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland

Tóm tắt

It is known that intensive training and expertise are associated with functional and structural neuroadaptations. Most studies, however, compared experts with nonexperts; hence it is, specifically for sports, unclear whether the neuroplastic adaptations reported are sport-specific or sport-general. Here we aimed at investigating sport-specific adaptations in professional handball players and ballet dancers by focusing on the primary motor and somatosensory grey matter (GM) representation of hands and feet using voxel-based morphometry as well as on fractional anisotropy (FA) of the corticospinal tract by means of diffusion tensor imaging-based fibre tractography. As predicted, GM volume was increased in hand areas of handball players, whereas ballet dancers showed increased GM volume in foot areas. Compared to handball players, ballet dancers showed decreased FA in both fibres connecting the foot and hand areas, but they showed lower FA in fibres connecting the foot compared to their hand areas, whereas handball players showed lower FA in fibres connecting the hand compared to their foot areas. Our results suggest that structural adaptations are sport-specific and are manifested in brain regions associated with the neural processing of sport-specific skills. We believe this enriches the plasticity research in general and extends our knowledge of sport expertise in particular.

Từ khóa


Tài liệu tham khảo

2014, Neuronale Plastizität, 66

10.1016/j.bbr.2008.02.015

10.3233/rnn-2009-0519

2013

10.3389/neuro.11.025.2009

10.1523/jneurosci.0742-08.2008

10.1038/427311a

10.1523/jneurosci.4628-05.2006

10.1371/journal.pone.0002669

2009, F1000 Biology Reports, 1, article 78

10.1097/WCO.0b013e32833b7631

10.1097/01.wco.0000236622.91495.21

10.1371/journal.pone.0124222

10.1007/s12311-009-0100-1

10.1016/j.jsams.2008.11.004

10.1007/s00221-015-4293-x

10.1016/j.neuroscience.2013.11.046

10.1371/journal.pone.0004785

10.1002/hbm.20928

10.1371/journal.pone.0096871

2010

2012

10.1055/s-2004-820974

10.1080/17461390903038470

2013

10.1152/jn.00339.2011

10.1111/j.2044-8295.1970.tb01248.x

10.2466/pms.1996.82.3.735

1971

10.1006/nimg.2000.0582

2001, Revue Neurologique, 157, 797

10.1093/brain/awm184

10.1006/nimg.2001.0786

10.1016/j.neuroimage.2004.07.051

10.1016/s1053-8119(03)00169-1

10.1016/j.neuroimage.2003.09.032

10.1002/mrm.10609

10.1016/j.neuroimage.2006.09.018

2009, Tractography for surgical targets

10.1006/nimg.2002.1267

10.1093/brain/116.1.39

10.1016/j.neuroimage.2010.08.013

10.1126/science.270.5234.305

10.1212/wnl.0b013e31823fcd9c

10.7554/eLife.01273

10.1016/0924-980x(95)00194-p

10.1007/s00221-004-1947-5

10.3389/fnhum.2014.00594

10.1016/S0926-6410(00)00028-8

10.1016/s0304-3940(99)00930-1

10.1016/j.neuroimage.2009.02.025

10.1016/j.neuroimage.2012.10.007

10.1016/j.neuroimage.2008.05.061

10.1002/hbm.20028

10.1002/hbm.20112

10.1016/j.neuroimage.2014.03.056

10.1523/jneurosci.3578-12.2013

10.1016/j.neuroimage.2015.11.008

10.1016/j.neuron.2012.01.025

10.1038/nn.3045

10.1017/s0140525x00034026

1995, Journal of Neurophysiology, 73, 373, 10.1152/jn.1995.73.1.373

10.1016/S0304-3940(02)00826-1

10.1016/s1053-8119(03)00369-0

10.2202/1932-0191.1025

10.1016/j.brainres.2009.08.014

10.1016/j.brainresrev.2008.12.024

10.1093/cercor/13.9.943

10.1016/j.pscychresns.2010.02.004