Difference schemes for hyperbolic equations with high order of accuracy
Tóm tắt
Từ khóa
Tài liệu tham khảo
de Bruijn Inequalities between quadratic and Hermitian forms to appear.
Buchanan M. A necessary and sufficient condition for stability of difference schemes for second order initial value problems Adelphi College Dept. Grad. Math. Res. Rep. No. 104 1962.
Kreiss H. O. Über die approximative Lösung von linearen partiellen Differentialgleichungen mit Hilfe von Differenzengleichungen Trans. Roy. Inst. Tech. Stockholm No. 128 1958.
Lax P. D. andWendroff B. Difference schemes with high order of accuracy for solving hyperbolic equations New York Univ. Courant Inst. Math. Sci. Res. Rep. No. NYO‐9759 1962.
Richtmyer R. D., 1957, Tracts in Pure and Applied Math
Richtmyer R. D. A survey of difference methods for non‐steady fluid dynamics NCAR Tech. Notes 63–2 1962.
Kreiss H. O. On difference approximations of the dissipative type for hyperbolic differential equationsComm. Pure Appl. Math. this issue.
Morton K. W. On a matrix theorem due to H. O. Kreiss Comm. Pure Appl. Math. this issue.
Burstein S. Z. Numerical calculations of multidimensional shocked flows New York Univ. Courant Inst. Math. Sci. Res. Rep. NYO‐10 433 1963.
Strang G. Accurate partial difference methods II: non‐linear problems to appear.