Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của dầu nấm giàu arachidonic và dầu cá đến sự biểu hiện gen ở gan và hồi hippocampus của chuột
Tóm tắt
Chức năng, hoạt động và điều hòa chuyển hóa mô bị ảnh hưởng bởi việc tiêu thụ axit béo không bão hòa đa chuỗi dài (LC-PUFA) từ dầu cá và các nguồn khác vẫn chưa được hiểu rõ; đặc biệt là cách thức LC-PUFA ảnh hưởng đến quá trình phiên mã của các gen liên quan đến điều hòa chuyển hóa. Trong nghiên cứu này, chuột được cho ăn chế độ ăn chứa dầu cá giàu axit eicosapentaenoic và axit docosahexaenoic, dầu nấm giàu axit arachidonic, hoặc sự kết hợp của cả hai. Sau đó, mô gan và hồi hippocampus được phân tích thông qua một chiến lược kết hợp giữa biểu hiện gen và phân tích lipid nhằm chú thích các chức năng phân tử và các mục tiêu của LC-PUFA từ chế độ ăn. Sử dụng công nghệ vi mạch, có 329 và 356 bản sao gen được điều chỉnh bởi chế độ ăn được xác định trong gan và hồi hippocampus, tương ứng. Tất cả các gen được chọn làm biểu hiện khác biệt được nhóm lại theo các mẫu biểu hiện thông qua một phương pháp kết hợp k-means/phân cụm phân cấp và được chú thích bằng các phân loại của gene ontology. Trong gan, các nhóm gen được liên kết với các yếu tố phiên mã PPARα, HNFα và SREBP-1; các yếu tố phiên mã có vai trò điều khiển chuyển hóa lipid. Mẫu gen được điều chỉnh khác biệt, được hỗ trợ thêm bằng phân tích lipid định lượng, đã gợi ý rằng các chế độ ăn thử nghiệm làm tăng quá trình β-oxi hóa và gluconeogenesis trong gan trong khi giảm tổng hợp axit béo. Cuối cùng, những thay đổi gene mới trong hồi hippocampus đã được xác định. Việc kiểm tra ảnh hưởng phiên mã rộng lớn của LC-PUFA đã xác nhận các thay đổi biểu hiện gen được trung gian bởi PUFA đã được xác định trước đó và phát hiện các mục tiêu gen mới. Profiling biểu hiện gen đã hiển thị một mẫu gen phức tạp và đa dạng nằm dưới phản ứng sinh học đối với LC-PUFA từ chế độ ăn. Kết quả của những thay đổi trong chế độ ăn được nghiên cứu đã làm nổi bật các ảnh hưởng phổ quát đối với các yếu tố phiên mã chuyển hóa lipid lớn của sinh vật nhân thực. Những nghiên cứu tập trung tiếp theo, xuất phát từ dữ liệu phiên mã như vậy, sẽ cần phân tích các con đường tín hiệu của các yếu tố phiên mã để fully giải thích cách mà dầu cá và axit arachidonic đạt được các tác động cụ thể của chúng đến sức khỏe.
Từ khóa
#axit béo không bão hòa đa chuỗi dài #dầu cá #dầu nấm #phiên mã gen #chuyển hóa lipidTài liệu tham khảo
Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, Ma J: Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med. 2002, 346: 1113-1118. 10.1056/NEJMoa012918
Connor WE: Importance of n-3 fatty acids in health and disease. Am J Clin Nutr. 2000, 71: 171S-175S.
Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, Hunter D, Manson JE: Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. Jama. 2002, 287: 1815-1821. 10.1001/jama.287.14.1815
Kang JX, Leaf A: Prevention of fatal cardiac arrhythmias by polyunsaturated fatty acids. Am J Clin Nutr. 2000, 71: 202S-207S.
Kromhout D, Bosschieter EB, de Lezenne Coulander C: The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N Engl J Med. 1985, 312: 1205-1209.
Calder PC: n-3 polyunsaturated fatty acids and cytokine production in health and disease. Ann Nutr Metab. 1997, 41: 203-234.
Volker D, Fitzgerald P, Major G, Garg M: Efficacy of fish oil concentrate in the treatment of rheumatoid arthritis. J Rheumatol. 2000, 27: 2343-2346.
Ziboh VA, Miller CC, Cho Y: Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites. Am J Clin Nutr. 2000, 71: 361S-366S.
Martinez M, Vazquez E, Garcia-Silva MT, Manzanares J, Bertran JM, Castello F, Mougan I: Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders. Am J Clin Nutr. 2000, 71: 376S-385S.
Bougnoux P: n-3 polyunsaturated fatty acids and cancer. Curr Opin Clin Nutr Metab Care. 1999, 2: 121-126. 10.1097/00075197-199903000-00005
Hu FB, van Dam RM, Liu S: Diet and risk of Type II diabetes: the role of types of fat and carbohydrate. Diabetologia. 2001, 44: 805-817. 10.1007/s001250100547
Innis SM, Gilley J, Werker J: Are human milk long-chain polyunsaturated fatty acids related to visual and neural development in breast-fed term infants?. J Pediatr. 2001, 139: 532-537. 10.1067/mpd.2001.118429
Kelley DS: Modulation of human immune and inflammatory responses by dietary fatty acids. Nutrition. 2001, 17: 669-673. 10.1016/S0899-9007(01)00576-7
Roche HM, Gibney MJ: Effect of long-chain n-3 polyunsaturated fatty acids on fasting and postprandial triacylglycerol metabolism. Am J Clin Nutr. 2000, 71: 232S-237S.
Abeywardena MY, Head RJ: Longchain n-3 polyunsaturated fatty acids and blood vessel function. Cardiovasc Res. 2001, 52: 361-371. 10.1016/S0008-6363(01)00406-0
Escudero A, Montilla JC, Garcia JM, Sanchez-Quevedo MC, Periago JL, Hortelano P, Suarez MD: Effect of dietary (n-9), (n-6) and (n-3) fatty acids on membrane lipid composition and morphology of rat erythrocytes. Biochim Biophys Acta. 1998, 1394: 65-73. 10.1016/S0005-2760(98)00095-2
Jump DB: Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr Opin Lipidol. 2002, 13: 155-164. 10.1097/00041433-200204000-00007
Kitajka K, Puskas LG, Zvara A, Hackler L, Barcelo-Coblijn G, Yeo YK, Farkas T: The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci U S A. 2002, 99: 2619-2624. 10.1073/pnas.042698699
Nakamura MT, Cho HP, Xu J, Tang Z, Clarke SD: Metabolism and functions of highly unsaturated fatty acids: an update. Lipids. 2001, 36: 961-964.
Lauritzen L, Hansen HS, Jorgensen MH, Michaelsen KF: The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res. 2001, 40: 1-94. 10.1016/S0163-7827(00)00017-5
Schiefermeier M, Yavin E: n-3 Deficient and docosahexaenoic acid-enriched diets during critical periods of the developing prenatal rat brain. J Lipid Res. 2002, 43: 124-131.
Ferdinandusse S, Denis S, Mooijer P, Zhang Z, Reddy J, Spector A, Wanders R: Identification of the peroxisomal β-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. J Lipid Res. 2001, 42: 1987-1995.
Duplus E, Forest C: Is there a single mechanism for fatty acid regulation of gene transcription?. Biochem Pharmacol. 2002, 64: 893- 10.1016/S0006-2952(02)01157-7
Abel T, Lattal KM: Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol. 2001, 11: 180-187. 10.1016/S0959-4388(00)00194-X
Murthy M, Hamilton J, Greiner RS, Moriguchi T, Salem N, Kim HY: Differential effects of n-3 fatty acid deficiency on phospholipid molecular species composition in the rat hippocampus. J Lipid Res. 2002, 43: 611-617.
Qi K, Hall M, Deckelbaum RJ: Long-chain polyunsaturated fatty acid accretion in brain. Curr Opin Clin Nutr Metab Care. 2002, 5: 133-138. 10.1097/00075197-200203000-00003
Mutch DM, Berger A, Mansourian R, Rytz A, Roberts MA: The limit fold change model: A practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics. 2002, 3: 17- 10.1186/1471-2105-3-17
Ashburner M: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000, 25: 25-29. http://www.geneontology.org/ 10.1038/75556
Kliewer SA: Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A. 1997, 94: 4318-4323. 10.1073/pnas.94.9.4318
Cherkaoui-Malki M, Meyer K, Cao WQ, Latruffe N, Yeldandi AV, Rao MS, Bradfield CA, Reddy JK: Identification of novel peroxisome proliferator-activated receptor alpha (PPARα) target genes in mouse liver using cDNA microarray analysis. Gene Expr. 2001, 9: 291-304.
Carlsson L, Linden D, Jalouli M, Oscarsson J: Effects of fatty acids and growth hormone on liver fatty acid binding protein and PPARα in rat liver. Am J Physiol Endocrinol Metab. 2001, 281: E772-E781.
Nakamura T, Fox-Robichaud A, Kikkawa R, Kashiwagi A, Kojima H, Fujimiya M, Wong NC: Transcription factors and age-related decline in apolipoprotein A-I expression. J Lipid Res. 1999, 40: 1709-1718.
Sprecher H: Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta. 2000, 1486: 219-231. 10.1016/S1388-1981(00)00077-9
Yoshikawa T: Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol Chem. 2002, 277: 1705-1711. 10.1074/jbc.M105711200
Moon YA, Shah NA, Mohapatra S, Warrington JA, Horton JD: Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem. 2001, 276: 45358-45366. 10.1074/jbc.M108413200
Shimano H: Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res. 2001, 40: 439-452. 10.1016/S0163-7827(01)00010-8
Jump D, Thelen A, Mater M: Functional interaction between sterol regulatory element-binding. J Biol Chem. 2001, 276: 34419-34427. 10.1074/jbc.M105471200
Moon YS, Latasa M-J, Griffin MJ, Sul HS: Suppression of fatty acid synthase promoter by polyunsaturated fatty acids. J Lipid Res. 2002, 43: 691-698.
Teran-Garcia M, Rufo C, Nakamura MT, Osborne TF, Clarke SD: NF-Y involvement in the polyunsaturated fat inhibition of fatty acid synthase gene transcription. Biochem Biophys Res Commun. 2002, 290: 1295-1299. 10.1006/bbrc.2002.6341
Navas MA, Vaisse C, Boger S, Heimesaat M, Kollee LA, Stoffel M: The human HNF-3 genes: cloning, partial sequence and mutation screening in patients with impaired glucose homeostasis. Hum Hered. 2000, 50: 370-381. 10.1159/000022943
Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S: FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell. 2001, 106: 563-573.
Lin B, Morris DW, Chou JY: The role of HNF1α, HNF3γ, and cyclic AMP in glucose-6-phosphatase gene activation. Biochemistry. 1997, 36: 14096-14106. 10.1021/bi9703249
Kaestner K, Hiemisch H, Luckow B, Schutz G: The HNF-3 gene family of transcription factors in mice: gene structure. Genomics. 1994, 20: 377-385. 10.1006/geno.1994.1191
Fukuda H, Iritani N, Katsurada A, Noguchi T: Insulin- and polyunsaturated fatty acid-responsive region(s) of rat ATP citrate lyase gene promoter. FEBS Lett. 1996, 380: 204-207. 10.1016/0014-5793(96)00031-2
Ruderman NB, Saha AK, Vavvas D, Kurowski T, Laybutt DR, Schmitz-Peiffer C, Biden T, Kraegen EW: Malonyl CoA as a metabolic switch and a regulator of insulin sensitivity. Adv Exp Med Biol. 1998, 441: 263-270.
Yamashita H, Kaneyuki T, Tagawa K: Production of acetate in the liver and its utilization in peripheral tissues. Biochim Biophys Acta. 2001, 1532: 79-87. 10.1016/S1388-1981(01)00117-2
Ikeda Y, Yamamoto J, Okamura M, Fujino T, Takahashi S, Takeuchi K, Osborne TF, Yamamoto TT, Ito S, Sakai J: Transcriptional regulation of the murine acetyl-CoA synthetase 1 gene through multiple clustered binding sites for sterol regulatory element-binding proteins and a single neighboring site for Sp1. J Biol Chem. 2001, 276: 34259-34269. 10.1074/jbc.M103848200
Sone H: Acetyl-coenzyme A synthetase is a lipogenic enzyme controlled by SREBP-1 and energy status. Am J Physiol Endocrinol Metab. 2002, 282: E222-230.
Martin G, Poirier H, Hennuyer N, Crombie D, Fruchart JC, Heyman RA, Besnard P, Auwerx J: Induction of the fatty acid transport protein 1 and acyl-CoA synthase genes by dimer-selective rexinoids suggests that the peroxisome proliferator-activated receptor-retinoid X receptor heterodimer is their molecular target. J Biol Chem. 2000, 275: 12612-12618. 10.1074/jbc.275.17.12612
Eaton S: Control of mitochondrial β-oxidation flux. Prog Lipid Res. 2002, 41: 197-239. 10.1016/S0163-7827(01)00024-8
Chen Q, Luthria DL, Sprecher H: Analysis of the acyl-CoAs that accumulate during the peroxisomal beta-oxidation of arachidonic acid and 6, 9, 12-octadecatrienoic acid. Arch Biochem Biophys. 1998, 349: 371-375. 10.1006/abbi.1997.0461
Rajas F, Gautier A, Bady I, Montano S, Mithieux G: Polyunsaturated fatty acyl-coenzyme A suppress the glucose-6 phosphatase promoter activity by modulating the DNA binding of hepatocyte nuclear factor 4 α. J Biol Chem. 2002, 10.1074/jbc.M200971200: 25-
Schwartz JH: The many dimensions of cAMP signaling. Proc Natl Acad Sci U S A. 2001, 98: 13482-13484. 10.1073/pnas.251533998
Yan C, Zhao AZ, Sonnenburg WK, Beavo JA: Stage and cell-specific expression of calmodulin-dependent phosphodiesterases in mouse testis. Biol Reprod. 2001, 64: 1746-1754.
Roesler WJ: What is a cAMP response unit?. Mol Cell Endocrinol. 2000, 162: 1-7. 10.1016/S0303-7207(00)00198-2
Chakravarty K, Leahy P, Becard D, Hakimi P, Foretz M, Ferre P, Foufelle F, Hanson RW: Sterol regulatory element-binding protein-1c mimics the negative effect of insulin on phosphoenolpyruvate carboxykinase (GTP) gene transcription. J Biol Chem. 2001, 276: 34816-34823. 10.1074/jbc.M103310200
Desvergne B, Wahli W: PPAR: Nuclear control of metabolism. Endocr Rev. 1999, 20: 649-688.
Capdevila JH, Falck JR: The CYP P450 arachidonic acid monooxygenases: from cell signaling to blood pressure regulation. Biochem Biophys Res Commun. 2001, 285: 571-576. 10.1006/bbrc.2001.5167
Ntambi JM, Bene H: Polyunsaturated fatty acid regulation of gene expression. J Mol Neurosci. 2001, 16: 273-278. 10.1385/JMN:16:2-3:273
Toke DA, Martin CE: Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J Biol Chem. 1996, 271: 18413-18422. 10.1074/jbc.271.31.18413
Oh CS, Toke DA, Mandala S, Martin CE: ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem. 1997, 272: 17376-17384. 10.1074/jbc.272.28.17376
Tvrdik P, Westerberg R, Silve S, Asadi A, Jakobsson A, Cannon B, Loison G, Jacobsson A: Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J Cell Biol. 2000, 149: 707-718. 10.1083/jcb.149.3.707
Chinetti G: PPARα and PPARγ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med. 2001, 7: 53-58. 10.1038/83348
Schmitz G, Langmann T: Structure, function and regulation of the ABC1 gene product. Curr Opin Lipidol. 2001, 12: 129-140. 10.1097/00041433-200104000-00006
Wang Y, Oram JF: Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cassette transporter A1. J Biol Chem. 2002, 277: 5692-5697. 10.1074/jbc.M109977200
Teboul L, Febbraio M, Gaillard D, Amri EZ, Silverstein R, Grimaldi PA: Structural and functional characterization of the mouse fatty acid translocase promoter: activation during adipose differentiation. Biochem J. 2001, 360: 305-312. 10.1042/0264-6021:3600305
Frohnert BI, Bernlohr DA: Regulation of fatty acid transporters in mammalian cells. Prog Lipid Res. 2000, 39: 83-107. 10.1016/S0163-7827(99)00018-1
Yu LR, Zeng R, Shao XX, Wang N, Xu YH, Xia QC: Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry. Electrophoresis. 2000, 21: 3058-3068. 10.1002/1522-2683(20000801)21:14<3058::AID-ELPS3058>3.0.CO;2-U
Hohoff C, Borchers T, Rustow B, Spener F, van-Tilbeurgh H: Expression, purification, and crystal structure determination of recombinant human epidermal-type fatty acid binding protein. Biochemistry. 1999, 38: 12229-12239. 10.1021/bi990305u
Hagens G, Masouye I, Augsburger E, Hotz R, Saurat JH, Siegenthaler G: Calcium-binding protein S100A7 and epidermal-type fatty acid-binding protein are associated in the cytosol of human keratinocytes. Biochem J. 1999, 339: 419-427. 10.1042/0264-6021:3390419
Mayser P, Grimm H, Grimminger F: n-3 fatty acids in psoriasis. Br J Nutr. 2002, 87: S77-S82. 10.1079/BJN2001459
Hsu MH, Savas U, Griffin KJ, Johnson EF: Identification of peroxisome proliferator-responsive human genes by elevated expression of the peroxisome proliferator-activated receptor α in HepG2 cells. J Biol Chem. 2001, 276: 27950-27958. 10.1074/jbc.M100258200
Lawrence JW, Li Y, Chen S, DeLuca JG, Berger JP, Umbenhauer DR, Moller DE, Zhou G: Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator-activated receptor (PPAR) α. PPARα fails to induce peroxisome proliferation-associated genes in human cells independently of the level of receptor expresson. J Biol Chem. 2001, 276: 31521-31527. 10.1074/jbc.M103306200
Nelson GJ, Schmidt PC, Bartolini GL, Kelley DS, Kyle D: The effect of dietary docosahexaenoic acid on plasma lipoproteins and tissue fatty acid composition in humans. Lipids. 1997, 32: 1137-1146.
Cohen RD, Castellani LW, Qiao JH, Van Lenten B, Lusis AJ, Reue K: Reduced aortic lesions and elevated high density lipoprotein levels in transgenic mice overexpressing mouse apolipoprotein A-IV. J Clin Invest. 1997, 99: 1906-1916.
Raspe E, Madsen L, Lefebvre AM, Leitersdorf I, Gelman L, Peinado-Onsurbe J, Dallongeville J, Fruchart JC, Berge R, Staels B: Modulation of rat liver apolipoprotein gene expression and serum lipid levels by tetradecylthioacetic acid (TTA) via PPARα activation. J Lipid Res. 1999, 40: 2099-2110.
Ricote M, Glass CK: New roles for PPARs in cholesterol homeostasis. Trends Pharmacol Sci. 2001, 22: 441-443. 10.1016/S0165-6147(00)01802-2
Weinberg RB, Patton CS: Binding of human apolipoprotein A-IV to human hepatocellular plasma membranes. Biochim Biophys Acta. 1990, 1044: 255-261. 10.1016/0005-2760(90)90311-K
The complete dataset is posted at the NCBI gene expression Omnibus. Accession Number: GSE91, http://www.ncbi.nlm.nih.gov/geo/
Lim CF, Munro SL, Wynne KN, Topliss DJ, Stockigt JR: Influence of nonesterified fatty acids and lysolecithins on thyroxine binding to thyroxine-binding globulin and transthyretin. Thyroid. 1995, 5: 319-324.
Watanabe CM, Wolffram S, Ader P, Rimbach G, Packer L, Maguire JJ, Schultz PG, Gohil K: The in vivo neuromodulatory effects of the herbal medicine Ginkgo biloba. Proc Natl Acad Sci U S A. 2001, 98: 6577-6580. 10.1073/pnas.111126298
Kimura T, Ohta T, Watanabe K, Yoshimura H, Yamamoto I: Anandamide, an endogenous cannabinoid receptor ligand, also interacts with 5-hydroxytryptamine (5-HT) receptor. Biol Pharm Bull. 1998, 21: 224-226.
Fan P: Cannabinoid agonists inhibit the activation of 5-HT3 receptors in rat nodose ganglion neurons. J Neurophysiol. 1995, 73: 907-910.
Berger A, Crozier G, Bisogno T, Cavaliere P, Innis S, Di-Marzo V: Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proc Natl Acad Sci U S A. 2001, 98: 6402-6406. 10.1073/pnas.101119098
Matsumoto M, Togashi H, Mori K, Ueno- K, Ohashi S, Kojima T, Yoshioka M: Evidence for involvement of central 5-HT4 receptors in cholinergic function associated with cognitive processes: behavioral, electrophysiological, and neurochemical studies. J Pharmacol Exp Ther. 2001, 296: 676-682.
Raygada M, Cho E, Hilakivi-Clarke L: High maternal intake of polyunsaturated fatty acids during pregnancy in mice alters offsprings' aggressive behavior, immobility in the swim test, locomotor activity and brain protein kinase C activity. J Nutr. 1998, 128: 2505-2511.
Madani S, Hichami A, Legrand A, Belleville J, Khan NA: Implication of acyl chain of diacylglycerols in activation of different isoforms of protein kinase C. FASEB J. 2001, 15: 2595-2601. 10.1096/fj.01-0753int
Sato C, Fukuoka H, Ohta K, Matsuda T, Koshino R, Kobayashi K, Troy FA, Kitajima K: Frequent occurrence of pre-existing α2→8-linked disialic and oligosialic acids with chain lengths up to 7 Sia residues in mammalian brain glycoproteins. Prevalence revealed by highly sensitive chemical methods and anti-, di-, oligo-, and poly-Sia antibodies specific for defined chain lengths. J Biol Chem. 2000, 275: 15422-15431. 10.1074/jbc.275.20.15422
Gallagher HC, Murphy KJ, Foley AG, Regan CM: Protein kinase C delta regulates neural cell adhesion molecule polysialylation state in the rat brain. J Neurochem. 2001, 77: 425-434. 10.1046/j.1471-4159.2001.00235.x
Seidenfaden R, Hildebrandt H: Retinoic acid-induced changes in polysialyltransferase mRNA expression and NCAM polysialylation in human neuroblastoma cells. J Neurobiol. 2001, 46: 11-28. 10.1002/1097-4695(200101)46:1<11::AID-NEU2>3.0.CO;2-#
Pritchard LE, Turnbull AV, White A: Pro-opiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesity. J Endocrinol. 2002, 172: 411-421.
Ziotopoulou M, Mantzoros CS, Hileman SM, Flier JS: Differential expression of hypothalamic neuropeptides in the early phase of diet-induced obesity in mice. Am J Physiol Endocrinol Metab. 2000, 279: E838-845.
Ide T, Kobayashi H, Ashakumary L, Rouyer IA, Takahashi Y, Aoyama T, Hashimoto T, Mizugaki M: Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochim Biophys Acta. 2000, 1485: 23-35. 10.1016/S1388-1981(00)00026-3
Raclot T, Groscolas R, Langin D, Ferre P: Site-specific regulation of gene expression by n-3 polyunsaturated fatty acids in rat white adipose tissues. J Lipid Res. 1997, 38: 1963-1972.
Liang CP, Tall AR: Transcriptional profiling reveals global defects in energy metabolism, lipoprotein, and bile acid synthesis and transport with reversal by leptin treatment in Ob/ob mouse liver. J Biol Chem. 2001, 276: 49066-49076. 10.1074/jbc.M107250200
Chalon S, Delion-Vancassel S, Belzung C, Guilloteau D, Leguisquet AM, Besnard JC, Durand G: Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J Nutr. 1998, 128: 2512-2519.