Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease

Current Medicinal Chemistry - Tập 26 Số 19 - Trang 3376-3406 - 2019
José Teixeira1, Daniel Chavarria1, Fernanda Borges1, Lech Wojtczak2, Mariusz R. Więckowski2, Agnieszka Karkucińska‐Więckowska3, Paulo J. Oliveira4
1CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
2Nencki Institute of Experimental Biology, Warsaw, Poland
3Department of Pathology, The Children’s Memorial Health Institute, Warsaw, Poland
4CNC – Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park – Cantanhede, University of Coimbra, Portugal

Tóm tắt

Mitochondria are cytoplasmic double-membraned organelles that are involved in a myriad of key cellular regulatory processes. The loss of mitochondrial function is related to the pathogenesis of several human diseases. Over the last decades, an increasing number of studies have shown that dietary polyphenols can regulate mitochondrial redox status, and in some cases, prevent or delay disease progression. This paper aims to review the role of four dietary polyphenols – resveratrol, curcumin, epigallocatechin-3-gallate nd quercetin – in molecular pathways regulated by mitochondria and their potential impact on human health. Cumulative evidence showed that the aforementioned polyphenols improve mitochondrial functions in different in vitro and in vivo experiments. The mechanisms underlying the polyphenols’ beneficial effects include, among others, the attenuation of oxidative stress, the regulation of mitochondrial metabolism and biogenesis and the modulation of cell-death signaling cascades, among other mitochondrial-independent effects. The understanding of the chemicalbiological interactions of dietary polyphenols, namely with mitochondria, may have a huge impact on the treatment of mitochondrial dysfunction-related disorders.

Từ khóa


Tài liệu tham khảo

Sádaba M.C.; Martín-Estal I.; Puche J.E.; Castilla-Cortázar I.; Insulin-like growth factor 1 (IGF-1) therapy: mitochondrial dysfunction and diseases. Biochim Biophys Acta 2016,1862(7),1267-1278

Smith R.A.; Hartley R.C.; Cochemé H.M.; Murphy M.P.; Mitochondrial pharmacology. Trends Pharmacol Sci 2012,33(6),341-352

Bolisetty S.; Jaimes E.A.; Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013,14(3),6306-6344

Gibellini L.; Bianchini E.; De Biasi S.; Nasi M.; Cossarizza A.; Pinti M.; Natural compounds modulating mitochondrial functions. Evid Based Complement Alternat Med 2015

Paillusson S.; Stoica R.; Gomez-Suaga P.; Lau D.H.W.; Mueller S.; Miller T.; Miller C.C.J.; There’s something wrong with my MAM; the er-mitochondria axis and neurodegenerative diseases. Trends Neurosci 2016,39(3),146-157

Brand M.D.; Nicholls D.G.; Assessing mitochondrial dysfunction in cells. Biochem J 2011,435(2),297-312

Nicolson G.L.; Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integr Med (Encinitas) 2014,13(4),35-43

Wang W.; Karamanlidis G.; Tian R.; Novel targets for mitochondrial medicine. Sci Transl Med 2016,8(326)

de Oliveira M.R.; Nabavi S.F.; Manayi A.; Daglia M.; Hajheydari Z.; Nabavi S.M.; Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta 2016,1860(4),727-745

Forbes-Hernández T.Y.; Giampieri F.; Gasparrini M.; Mazzoni L.; Quiles J.L.; Alvarez-Suarez J.M.; Battino M.; The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014,68,154-182

Howitz K.T.; Sinclair D.A.; Xenohormesis: sensing the chemical cues of other species. Cell 2008,133(3),387-391

Mandal S.M.; Chakraborty D.; Dey S.; Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 2010,5(4),359-368

Leopoldini M.; Russo N.; Toscano M.; The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 2011,125(2),288-306

Barrajón-Catalán E.; Herranz-López M.; Joven J.; Segura-Carretero A.; Alonso-Villaverde C.; Menéndez J.A.; Micol V.; Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties. Adv Exp Med Biol 2014,824,141-159

Visioli F.; De La Lastra C.A.; Andres-Lacueva C.; Aviram M.; Calhau C.; Cassano A.; D’Archivio M.; Faria A.; Favé G.; Fogliano V.; Llorach R.; Vitaglione P.; Zoratti M.; Edeas M.; Polyphenols and human health: a prospectus. Crit Rev Food Sci Nutr 2011,51(6),524-546

Obrenovich M.E.; Nair N.G.; Beyaz A.; Aliev G.; Reddy V.P.; The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res 2010,13(6),631-643

Sandoval-Acuña C.; Ferreira J.; Speisky H.; Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 2014,559,75-90

Upadhyay S.; Dixit M.; Role of polyphenols and other phytochemicals on molecular signaling. Oxid Med Cell Longev 2015,2015

Tsuji P.A.; Stephenson K.K.; Wade K.L.; Liu H.; Fahey J.W.; Structure-activity analysis of flavonoids: direct and indirect antioxidant, and antiinflammatory potencies and toxicities. Nutr Cancer 2013,65(7),1014-1025

Mladěnka P.; Macáková K.; Filipský T.; Zatloukalová L.; Jahodář L.; Bovicelli P.; Silvestri I.P.; Hrdina R.; Saso L.; In vitro analysis of iron chelating activity of flavonoids. J Inorg Biochem 2011,105(5),693-701

Fresco P.; Borges F.; Diniz C.; Marques M.P.; New insights on the anticancer properties of dietary polyphenols. Med Res Rev 2006,26(6),747-766

Alves D.S.; Pérez-Fons L.; Estepa A.; Micol V.; Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem Pharmacol 2004,68(3),549-561

Menendez J.A.; Joven J.; Aragonès G.; Barrajón-Catalán E.; Beltrán-Debón R.; Borrás-Linares I.; Camps J.; Corominas-Faja B.; Cufí S.; Fernández-Arroyo S.; Garcia-Heredia A.; Hernández-Aguilera A.; Herranz-López M.; Jiménez-Sánchez C.; López-Bonet E.; Lozano-Sánchez J.; Luciano-Mateo F.; Martin-Castillo B.; Martin-Paredero V.; Pérez-Sánchez A.; Oliveras-Ferraros C.; Riera-Borrull M.; Rodríguez-Gallego E.; Quirantes-Piné R.; Rull A.; Tomás-Menor L.; Vazquez-Martin A.; Alonso-Villaverde C.; Micol V.; Segura-Carretero A.; Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle 2013,12(4),555-578

Maulik N.; McFadden D.; Otani H.; Thirunavukkarasu M.; Parinandi N.L.; Antioxidants in longevity and medicine. Oxid Med Cell Longev 2013,2013

Turrens J.F.; Mitochondrial formation of reactive oxygen species. J Physiol 2003,552(Pt 2),335-344

Adam-Vizi V.; Chinopoulos C.; Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 2006,27(12),639-645

Schrader M.; Fahimi H.D.; Peroxisomes and oxidative stress. Biochim Biophys Acta 2006,1763(12),1755-1766

Dahlgren C.; Karlsson A.; Respiratory burst in human neutrophils. J Immunol Methods 1999,232(1-2),3-14

Szewczyk A.; Wojtczak L.; Mitochondria as a pharmacological target. Pharmacol Rev 2002,54(1),101-127

Belyaeva E.A.; Dymkowska D.; Więckowski M.R.; Wojtczak L.; Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicol Appl Pharmacol 2008,231(1),34-42

de Grey A.D.; A proposed refinement of the mitochondrial free radical theory of aging. BioEssays 1997,19(2),161-166

Harman D.; Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology 2009,10(6),773-781

Kuehl F.A.; Egan R.W.; Prostaglandins, arachidonic acid, and inflammation. Science 1980,210(4473),978-984

Gottlieb R.A.; Cytochrome P450: major player in reperfusion injury. Arch Biochem Biophys 2003,420(2),262-267

Simoncini C.; Orsucci D.; Caldarazzo Ienco E.; Siciliano G.; Bonuccelli U.; Mancuso M.; Alzheimer’s pathogenesis and its link to the mitochondrion. Oxid Med Cell Longev 2015,2015

Blesa J.; Trigo-Damas I.; Quiroga-Varela A.; Jackson-Lewis V.R.; Oxidative stress and Parkinson’s disease. Front Neuroanat 2015,9,91

Wojtczak L.; Zabłocki K.; Drug-Induced Mitochondrial Dysfunction 2008,1-35

Dröge W.; Free radicals in the physiological control of cell function. Physiol Rev 2002,82(1),47-95

Rahal A.; Kumar A.; Singh V.; Yadav B.; Tiwari R.; Chakraborty S.; Dhama K.; Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Res Int 2014,2014

Firuzi O.; Miri R.; Tavakkoli M.; Saso L.; Antioxidant therapy: current status and future prospects. Curr Med Chem 2011,18(25),3871-3888

Schmidt H.H.; Stocker R.; Vollbracht C.; Paulsen G.; Riley D.; Daiber A.; Cuadrado A.; Antioxidants in Translational Medicine. Antioxid Redox Signal 2015,23(14),1130-1143

Guerrero R.F.; García-Parrilla M.C.; Puertas B.; Cantos-Villar E.; Wine, resveratrol and health: a review. Nat Prod Commun 2009,4(5),635-658

Huhn S.; Kharabian Masouleh S.; Stumvoll M.; Villringer A.; Witte A.V.; Components of a Mediterranean diet and their impact on cognitive functions in aging. Front Aging Neurosci 2015,7,132

Benfeito S.; Oliveira C.; Soares P.; Fernandes C.; Silva T.; Teixeira J.; Borges F.; Antioxidant therapy: still in search of the ‘magic bullet’. Mitochondrion 2013,13(5),427-435

Zini R.; Morin C.; Bertelli A.; Bertelli A.A.; Tillement J.P.; Effects of resveratrol on the rat brain respiratory chain. Drugs Exp Clin Res 1999,25(2-3),87-97

Moreira A.C.; Silva A.M.; Santos M.S.; Sardão V.A.; Resveratrol affects differently rat liver and brain mitochondrial bioenergetics and oxidative stress in vitro: investigation of the role of gender. Food Chem Toxicol 2013,53,18-26

Valdecantos M.P.; Pérez-Matute P.; Quintero P.; Martínez J.A.; Vitamin C, resveratrol and lipoic acid actions on isolated rat liver mitochondria: all antioxidants but different. Redox Rep 2010,15(5),207-216

Zheng J.; Ramirez V.D.; Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol 2000,130(5),1115-1123

Tinhofer I.; Bernhard D.; Senfter M.; Anether G.; Loeffler M.; Kroemer G.; Kofler R.; Csordas A.; Greil R.; Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. FASEB J 2001,15(9),1613-1615

Dörrie J.; Gerauer H.; Wachter Y.; Zunino S.J.; Resveratrol induces extensive apoptosis by depolarizing mitochondrial membranes and activating caspase-9 in acute lymphoblastic leukemia cells. Cancer Res 2001,61(12),4731-4739

Pozo-Guisado E.; Merino J.M.; Mulero-Navarro S.; Lorenzo-Benayas M.J.; Centeno F.; Alvarez-Barrientos A.; Fernandez-Salguero P.M.; Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-kappaB. Int J Cancer 2005,115(1),74-84

Gupta S.C.; Kismali G.; Aggarwal B.B.; Curcumin, a component of turmeric: from farm to pharmacy. Biofactors 2013,39(1),2-13

Metzler M.; Pfeiffer E.; Schulz S.I.; Dempe J.S.; Curcumin uptake and metabolism. Biofactors 2013,39(1),14-20

Huang M.T.; Smart R.C.; Wong C.Q.; Conney A.H.; Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 1988,48(21),5941-5946

Huang M.T.; Wang Z.Y.; Georgiadis C.A.; Laskin J.D.; Conney A.H.; Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene. Carcinogenesis 1992,13(11),2183-2186

Huang M.T.; Lou Y.R.; Ma W.; Newmark H.L.; Reuhl K.R.; Conney A.H.; Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res 1994,54(22),5841-5847

Conney A.H.; Lysz T.; Ferraro T.; Abidi T.F.; Manchand P.S.; Laskin J.D.; Huang M.T.; Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enzyme Regul 1991,31,385-396

Tanaka T.; Makita H.; Ohnishi M.; Hirose Y.; Wang A.; Mori H.; Satoh K.; Hara A.; Ogawa H.; Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary curcumin and hesperidin: comparison with the protective effect of beta-carotene. Cancer Res 1994,54(17),4653-4659

Rao C.V.; Rivenson A.; Simi B.; Reddy B.S.; Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 1995,55(2),259-266

Ruby A.J.; Kuttan G.; Babu K.D.; Rajasekharan K.N.; Kuttan R.; Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 1995,94(1),79-83

Jiang M.C.; Yang-Yen H.F.; Yen J.J.; Lin J.K.; Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer 1996,26(1),111-120

Kuo M.L.; Huang T.S.; Lin J.K.; Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochim Biophys Acta 1996,1317(2),95-100

Jaruga E.; Bielak-Zmijewska A.; Sikora E.; Skierski J.; Radziszewska E.; Piwocka K.; Bartosz G.; Glutathione-independent mechanism of apoptosis inhibition by curcumin in rat thymocytes. Biochem Pharmacol 1998,56(8),961-965

Piwocka K.; Zabłocki K.; Wieckowski M.R.; Skierski J.; Feiga I.; Szopa J.; Drela N.; Wojtczak L.; Sikora E.; A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells. Exp Cell Res 1999,249(2),299-307

Shehzad A.; Lee J.; Lee Y.S.; Curcumin in various cancers. Biofactors 2013,39(1),56-68

Shehzad A.; Rehman G.; Lee Y.S.; Curcumin in inflammatory diseases. Biofactors 2013,39(1),69-77

Bradford P.G.; Curcumin and obesity. Biofactors 2013,39(1),78-87

Zingg J.M.; Hasan S.T.; Meydani M.; Molecular mechanisms of hypolipidemic effects of curcumin. Biofactors 2013,39(1),101-121

Shen L.R.; Parnell L.D.; Ordovas J.M.; Lai C.Q.; Curcumin and aging. Biofactors 2013,39(1),133-140

Shehzad A.; Lee Y.S.; Molecular mechanisms of curcumin action: signal transduction. Biofactors 2013,39(1),27-36

Shishodia S.; Molecular mechanisms of curcumin action: gene expression. Biofactors 2013,39(1),37-55

Marchese A.; Coppo E.; Sobolev A.P.; Rossi D.; Mannina L.; Daglia M.; Influence of in vitro simulated gastroduodenal digestion on the antibacterial activity, metabolic profiling and polyphenols content of green tea (Camellia sinensis). Food Research International 2014,63 Part B,,182-191

Oliveira M.R.; Nabavi S.F.; Daglia M.; Rastrelli L.; Nabavi S.M.; Epigallocatechin gallate and mitochondria-A story of life and death. Pharmacol Res 2016,104,70-85

Higdon J.V.; Frei B.; Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 2003,43(1),89-143

Wong I.L.; Wang B.C.; Yuan J.; Duan L.X.; Liu Z.; Liu T.; Li X.M.; Hu X.; Zhang X.Y.; Jiang T.; Wan S.B.; Chow L.M.; Potent and nontoxic chemosensitizer of p-glycoprotein-mediated multidrug resistance in cancer: synthesis and evaluation of methylated epigallocatechin, gallocatechin, and dihydromyricetin derivatives. J Med Chem 2015,58(11),4529-4549

Costa L.G.; Garrick J.M.; Roquè P.J.; Pellacani C.; Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid Med Cell Longev 2016

Boots A.W.; Haenen G.R.; Bast A.; Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008,585(2-3),325-337

Liang L.; Gao C.; Luo M.; Wang W.; Zhao C.; Zu Y.; Efferth T.; Fu Y.; Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway. J Agric Food Chem 2013,61(11),2755-2761

Boesch-Saadatmandi C.; Pospissil R.T.; Graeser A.C.; Canali R.; Boomgaarden I.; Doering F.; Wolffram S.; Egert S.; Mueller M.J.; Rimbach G.; Effect of quercetin on paraoxonase 2 levels in RAW264.7 macrophages and in human monocytes--role of quercetin metabolism. Int J Mol Sci 2009,10(9),4168-4177

Costa L.G.; Garrick J.; Roque P.J.; Pellacani C.; Nutraceuticals in CNS diseases: potential mechanisms of neuroprotection. Nutraceuticals 2016,3-13

D’Andrea G.; Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015,106,256-271

EFSA Panel on Dietetic Products Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to quercetin and protection of DNA, proteins and lipids from oxidative damage (ID 1647), “cardiovascular system” (ID 1844), “mental state and performance” (ID 1845), and “liver, kidneys” (ID 1846) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2011,9(4),2067

Figueira T.R.; Barros M.H.; Camargo A.A.; Castilho R.F.; Ferreira J.C.; Kowaltowski A.J.; Sluse F.E.; Souza-Pinto N.C.; Vercesi A.E.; Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 2013,18(16),2029-2074

Forkink M.; Smeitink J.A.; Brock R.; Willems P.H.; Koopman W.J.; Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochim Biophys Acta 2010,1797(6-7),1034-1044

Murphy M.P.; How mitochondria produce reactive oxygen species. Biochem J 2009,417(1),1-13

Lagoa R.; Graziani I.; Lopez-Sanchez C.; Garcia-Martinez V.; Gutierrez-Merino C.; Complex I and cytochrome C are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim Biophys Acta 2011,1807(12),1562-1572

Hong S.; Pedersen P.L.; ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev [Table of Contents.2008,72(4),590-641

Gledhill J.R.; Montgomery M.G.; Leslie A.G.; Walker J.E.; Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci USA 2007,104(34),13632-13637

Kinnally K.W.; Antonsson B.; A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 2007,12(5),857-868

Trumbeckaite S.; Bernatoniene J.; Majiene D.; Jakstas V.; Savickas A.; Toleikis A.; The effect of flavonoids on rat heart mitochondrial function. Biomed Pharmacother 2006,60(5),245-248

McAnlis G.T.; McEneny J.; Pearce J.; Young I.S.; Absorption and antioxidant effects of quercetin from onions, in man. Eur J Clin Nutr 1999,53(2),92-96

De Marchi U.; Biasutto L.; Garbisa S.; Toninello A.; Zoratti M.; Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: A demonstration of the ambivalent redox character of polyphenols. Biochim Biophys Acta 2009,1787(12),1425-1432

Dorta D.J.; Pigoso A.A.; Mingatto F.E.; Rodrigues T.; Prado I.M.; Helena A.F.; Uyemura S.A.; Santos A.C.; Curti C.; The interaction of flavonoids with mitochondria: effects on energetic processes. Chem Biol Interact 2005,152(2-3),67-78

Amiot M.J.; Riva C.; Vinet A.; Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 2016,17(7),573-586

Wu L.; Noyan Ashraf M.H.; Facci M.; Wang R.; Paterson P.G.; Ferrie A.; Juurlink B.H.; Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc Natl Acad Sci USA 2004,101(18),7094-7099

Mattson M.P.; Cheng A.; Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 2006,29(11),632-639

Soobrattee M.A.; Bahorun T.; Aruoma O.I.; Chemopreventive actions of polyphenolic compounds in cancer. Biofactors 2006,27(1-4),19-35

Parker W.D.; Parks J.; Filley C.M.; Kleinschmidt-DeMasters B.K.; Electron transport chain defects in Alzheimer’s disease brain. Neurology 1994,44(6),1090-1096

Parks J.K.; Smith T.S.; Trimmer P.A.; Bennett J.P.; Parker W.D.; Jr Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem 2001,76(4),1050-1056

Kumar A.; Singh A.; A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions. Front Pharmacol 2015,6,206

Mathieu L.; Lopes Costa A.; Le Bachelier C.; Slama A.; Lebre A.S.; Taylor R.W.; Bastin J.; Djouadi F.; Resveratrol attenuates oxidative stress in mitochondrial Complex I deficiency: Involvement of SIRT3. Free Radic Biol Med 2016,96,190-198

Lopes Costa A.; Le Bachelier C.; Mathieu L.; Rotig A.; Boneh A.; De Lonlay P.; Tarnopolsky M.A.; Thorburn D.R.; Bastin J.; Djouadi F.; Beneficial effects of resveratrol on respiratory chain defects in patients’ fibroblasts involve estrogen receptor and estrogen-related receptor alpha signaling. Hum Mol Genet 2014,23(8),2106-2119

Desquiret-Dumas V.; Gueguen N.; Leman G.; Baron S.; Nivet-Antoine V.; Chupin S.; Chevrollier A.; Vessières E.; Ayer A.; Ferré M.; Bonneau D.; Henrion D.; Reynier P.; Procaccio V.; Resveratrol induces a mitochondrial complex I-dependent increase in NADH oxidation responsible for sirtuin activation in liver cells. J Biol Chem 2013,288(51),36662-36675

Wu Y.T.; Wu S.B.; Wei Y.H.; Metabolic reprogramming of human cells in response to oxidative stress: implications in the pathophysiology and therapy of mitochondrial diseases. Curr Pharm Des 2014,20(35),5510-5526

Bitterman J.L.; Chung J.H.; Metabolic effects of resveratrol: addressing the controversies. Cell Mol Life Sci 2015,72(8),1473-1488

Raza H.; John A.; Brown E.M.; Benedict S.; Kambal A.; Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells. Toxicol Appl Pharmacol 2008,226(2),161-168

Zhu Y.G.; Chen X.C.; Chen Z.Z.; Zeng Y.Q.; Shi G.B.; Su Y.H.; Peng X.; Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons. Acta Pharmacol Sin 2004,25(12),1606-1612

Kumar A.; Prakash A.; Dogra S.; Protective effect of curcumin (Curcuma longa) against D-galactose-induced senescence in mice. J Asian Nat Prod Res 2011,13(1),42-55

Rastogi M.; Ojha R.P.; Rajamanickam G.V.; Agrawal A.; Aggarwal A.; Dubey G.P.; Curcuminoids modulates oxidative damage and mitochondrial dysfunction in diabetic rat brain. Free Radic Res 2008,42(11-12),999-1005

Burgos-Morón E.; Calderón-Montaño J.M.; Salvador J.; Robles A.; López-Lázaro M.; The dark side of curcumin. Int J Cancer 2010,126(7),1771-1775

Kucera O.; Mezera V.; Moravcova A.; Endlicher R.; Lotkova H.; Drahota Z.; Cervinkova Z.; In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes. Oxid Med Cell Longev 2015

Valenti D.; Manente G.A.; Moro L.; Marra E.; Vacca R.A.; Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem J 2011,435(3),679-688

Valenti D.; Tullo A.; Caratozzolo M.F.; Merafina R.S.; Scartezzini P.; Marra E.; Vacca R.A.; Impairment of F1F0-ATPase, adenine nucleotide translocator and adenylate kinase causes mitochondrial energy deficit in human skin fibroblasts with chromosome 21 trisomy. Biochem J 2010,431(2),299-310

Valenti D.; De Rasmo D.; Signorile A.; Rossi L.; de Bari L.; Scala I.; Granese B.; Papa S.; Vacca R.A.; Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down’s syndrome. Biochim Biophys Acta 2013,1832(4),542-552

Valenti D.; de Bari L.; Manente G.A.; Rossi L.; Mutti L.; Moro L.; Vacca R.A.; Negative modulation of mitochondrial oxidative phosphorylation by epigallocatechin-3 gallate leads to growth arrest and apoptosis in human malignant pleural mesothelioma cells. Biochim Biophys Acta 2013,1832(12),2085-2096

Weng Z.; Zhou P.; Salminen W.F.; Yang X.; Harrill A.H.; Cao Z.; Mattes W.B.; Mendrick D.L.; Shi Q.; Green tea epigallocatechin gallate binds to and inhibits respiratory complexes in swelling but not normal rat hepatic mitochondria. Biochem Biophys Res Commun 2014,443(3),1097-1104

Lambert J.D.; Kennett M.J.; Sang S.; Reuhl K.R.; Ju J.; Yang C.S.; Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food Chem Toxicol 2010,48(1),409-416

Galati G.; Lin A.; Sultan A.M.; O’Brien P.J.; Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radic Biol Med 2006,40(4),570-580

Pohanka M.; Sobotka J.; Stetina R.; Sulfur mustard induced oxidative stress and its alteration by epigallocatechin gallate. Toxicol Lett 2011,201(2),105-109

Chowdhury A.; Sarkar J.; Chakraborti T.; Pramanik P.K.; Chakraborti S.; Protective role of epigallocatechin-3-gallate in health and disease: a perspective. Biomed Pharmacother 2016,78,50-59

Lambert J.D.; Elias R.J.; The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 2010,501(1),65-72

Kim H.S.; Quon M.J.; Kim J.A.; New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2014,2,187-195

Denny Joseph K.M.; Muralidhara, Combined oral supplementation of fish oil and quercetin enhances neuroprotection in a chronic rotenone rat model: relevance to Parkinson’s disease. Neurochem Res 2015,40(5),894-905

Waseem M.; Parvez S.; Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin. Protoplasma 2016,253(2),417-430

Hanahan D.; Weinberg R.A.; Hallmarks of cancer: the next generation. Cell 2011,144(5),646-674

Barbosa I.A.; Machado N.G.; Skildum A.J.; Scott P.M.; Oliveira P.J.; Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochim Biophys Acta 2012,1826(1),238-254

Vyas S.; Zaganjor E.; Haigis M.C.; Mitochondria and cancer. Cell 2016,166(3),555-566

Panieri E.; Santoro M.M.; ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 2016,7(6)

Varoni E.M.; Lo Faro A.F.; Sharifi-Rad J.; Iriti M.; Anticancer molecular mechanisms of resveratrol. Front Nutr 2016,3,8

Yang T.; Wang L.; Zhu M.; Zhang L.; Yan L.; Properties and molecular mechanisms of resveratrol: a review. Pharmazie 2015,70(8),501-506

Levi F.; Pasche C.; Lucchini F.; Ghidoni R.; Ferraroni M.; La Vecchia C.; Resveratrol and breast cancer risk. Eur J Cancer Prev 2005,14(2),139-142

Bishayee A.; Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2009,2(5),409-418

Buhrmann C.; Shayan P.; Kraehe P.; Popper B.; Goel A.; Shakibaei M.; Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem Pharmacol 2015,98(1),51-68

Ma L.; Li W.; Wang R.; Nan Y.; Wang Q.; Liu W.; Jin F.; Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis. Int J Oncol 2015,47(4),1460-1468

Gu S.; Chen C.; Jiang X.; Zhang Z.; Resveratrol synergistically triggers apoptotic cell death with arsenic trioxide via oxidative stress in human lung adenocarcinoma A549 cells. Biol Trace Elem Res 2015,163(1-2),112-123

Deus C.M.; Serafim T.L.; Magalhaes-Novais S.; Vilaca A.; Moreira A.C.; Sardao V.A.; Cardoso S.M.; Oliveira P.J.; Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells. Arch Toxicol 2017,91(3),1261-1278

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of curcumin (E 100) as a food additive. EFSA J 2010,8(9),1679

Hollensworth S.B.; Shen C.; Sim J.E.; Spitz D.R.; Wilson G.L.; LeDoux S.P.; Glial cell type-specific responses to menadione-induced oxidative stress. Free Radic Biol Med 2000,28(8),1161-1174

Morin D.; Barthélémy S.; Zini R.; Labidalle S.; Tillement J.P.; Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett 2001,495(1-2),131-136

Karmakar S.; Banik N.L.; Patel S.J.; Ray S.K.; Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci Lett 2006,407(1),53-58

Yoon M.J.; Kim E.H.; Lim J.H.; Kwon T.K.; Choi K.S.; Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells. Free Radic Biol Med 2010,48(5),713-726

Trujillo J.; Granados-Castro L.F.; Zazueta C.; Andérica-Romero A.C.; Chirino Y.I.; Pedraza-Chaverrí J.; Mitochondria as a target in the therapeutic properties of curcumin. Arch Pharm (Weinheim) 2014,347(12),873-884

Kumar G.; Mittal S.; Sak K.; Tuli H.S.; Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives. Life Sci 2016,148,313-328

Yamamoto T.; Staples J.; Wataha J.; Lewis J.; Lockwood P.; Schoenlein P.; Rao S.; Osaki T.; Dickinson D.; Kamatani T.; Schuster G.; Hsu S.; Protective effects of EGCG on salivary gland cells treated with gamma-radiation or cis-platinum(II)diammine dichloride. Anticancer Res 2004,24(5A),3065-3073

Khoi P.N.; Park J.S.; Kim J.H.; Xia Y.; Kim N.H.; Kim K.K.; Jung Y.D.; (-)-Epigallocatechin-3-gallate blocks nicotine-induced matrix metalloproteinase-9 expression and invasiveness via suppression of NF-κB and AP-1 in endothelial cells. Int J Oncol 2013,43(3),868-876

Hwang J.T.; Ha J.; Park I.J.; Lee S.K.; Baik H.W.; Kim Y.M.; Park O.J.; Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett 2007,247(1),115-121

Yamamoto T.; Hsu S.; Lewis J.; Wataha J.; Dickinson D.; Singh B.; Bollag W.B.; Lockwood P.; Ueta E.; Osaki T.; Schuster G.; Green tea polyphenol causes differential oxidative environments in tumor versus normal epithelial cells. J Pharmacol Exp Ther 2003,307(1),230-236

Liberto M.; Cobrinik D.; Growth factor-dependent induction of p21(CIP1) by the green tea polyphenol, epigallocatechin gallate. Cancer Lett 2000,154(2),151-161

Tewes F.J.; Koo L.C.; Meisgen T.J.; Rylander R.; Lung cancer risk and mutagenicity of tea. Environ Res 1990,52(1),23-33

Shirai T.; Sato A.; Hara Y.; Epigallocatechin gallate. The major causative agent of green tea-induced asthma. Chest 1994,106(6),1801-1805

Shirai T.; Sato A.; Chida K.; Hayakawa H.; Akiyama J.; Iwata M.; Taniguchi M.; Reshad K.; Hara Y.; Epigallocatechin gallate-induced histamine release in patients with green tea-induced asthma. Ann Allergy Asthma Immunol 1997,79(1),65-69

Choi K.C.; Park S.; Lim B.J.; Seong A.R.; Lee Y.H.; Shiota M.; Yokomizo A.; Naito S.; Na Y.; Yoon H.G.; Procyanidin B3, an inhibitor of histone acetyltransferase, enhances the action of antagonist for prostate cancer cells via inhibition of p300-dependent acetylation of androgen receptor. Biochem J 2011,433(1),235-244

Choi K.C.; Jung M.G.; Lee Y.H.; Yoon J.C.; Kwon S.H.; Kang H.B.; Kim M.J.; Cha J.H.; Kim Y.J.; Jun W.J.; Lee J.M.; Yoon H.G.; Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 2009,69(2),583-592

Lee Y.H.; Kwak J.; Choi H.K.; Choi K.C.; Kim S.; Lee J.; Jun W.; Park H.J.; Yoon H.G.; EGCG suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity. Int J Mol Med 2012,30(1),69-74

Zhang H.; Zhang M.; Yu L.; Zhao Y.; He N.; Yang X.; Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines. Food Chem Toxicol 2012,50(5),1589-1599

Haghiac M.; Walle T.; Quercetin induces necrosis and apoptosis in SCC-9 oral cancer cells. Nutr Cancer 2005,53(2),220-231

Richter M.; Ebermann R.; Marian B.; Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr Cancer 1999,34(1),88-99

Brisdelli F.; Coccia C.; Cinque B.; Cifone M.G.; Bozzi A.; Induction of apoptosis by quercetin: different response of human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells. Mol Cell Biochem 2007,296(1-2),137-149

Chen C.; Zhou J.; Ji C.; Quercetin: a potential drug to reverse multidrug resistance. Life Sci 2010,87(11-12),333-338

Nessa M.U.; Beale P.; Chan C.; Yu J.Q.; Huq F.; Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res 2011,31(11),3789-3797

Wang G.; Zhang J.; Liu L.; Sharma S.; Dong Q.; Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl. PLoS One 2012,7(12)

Lee T.J.; Kim O.H.; Kim Y.H.; Lim J.H.; Kim S.; Park J.W.; Kwon T.K.; Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells. Cancer Lett 2006,240(2),234-242

Choi J.A.; Kim J.Y.; Lee J.Y.; Kang C.M.; Kwon H.J.; Yoo Y.D.; Kim T.W.; Lee Y.S.; Lee S.J.; Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 2001,19(4),837-844

Srivastava S.; Somasagara R.R.; Hegde M.; Nishana M.; Tadi S.K.; Srivastava M.; Choudhary B.; Raghavan S.C.; Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 2016,6,24049

Boveris A.; Navarro A.; Brain mitochondrial dysfunction in aging. IUBMB Life 2008,60(5),308-314

Leuner K.; Hauptmann S.; Abdel-Kader R.; Scherping I.; Keil U.; Strosznajder J.B.; Eckert A.; Müller W.E.; Mitochondrial dysfunction: the first domino in brain aging and Alzheimer’s disease? Antioxid Redox Signal 2007,9(10),1659-1675

de Moura M.B.; dos Santos L.S.; Van Houten B.; Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen 2010,51(5),391-405

Müller W.E.; Eckert A.; Kurz C.; Eckert G.P.; Leuner K.; Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease--therapeutic aspects. Mol Neurobiol 2010,41(2-3),159-171

Chistiakov D.A.; Sobenin I.A.; Revin V.V.; Orekhov A.N.; Bobryshev Y.V.; Mitochondrial aging and age-related dysfunction of mitochondria. BioMed Res Int 2014,2014

Navarro A.; Boveris A.; Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease. Front Aging Neurosci 2010,2,2

Darvesh A.S.; Carroll R.T.; Bishayee A.; Geldenhuys W.J.; Van der Schyf C.J.; Oxidative stress and Alzheimer’s disease: dietary polyphenols as potential therapeutic agents. Expert Rev Neurother 2010,10(5),729-745

Baur J.A.; Sinclair D.A.; Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006,5(6),493-506

Fukui M.; Choi H.J.; Zhu B.T.; Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic Biol Med 2010,49(5),800-813

Kim D.; Nguyen M.D.; Dobbin M.M.; Fischer A.; Sananbenesi F.; Rodgers J.T.; Delalle I.; Baur J.A.; Sui G.; Armour S.M.; Puigserver P.; Sinclair D.A.; Tsai L.H.; SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 2007,26(13),3169-3179

Kumar A.; Naidu P.S.; Seghal N.; Padi S.S.; Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology 2007,79(1),17-26

Shetty A.K.; Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacol Ther 2011,131(3),269-286

Bastianetto S.; Quirion R.; Heme oxygenase 1: another possible target to explain the neuroprotective action of resveratrol, a multifaceted nutrient-based molecule. Exp Neurol 2010,225(2),237-239

Quincozes-Santos A.; Bobermin L.D.; Tramontina A.C.; Wartchow K.M.; Tagliari B.; Souza D.O.; Wyse A.T.; Gonçalves C.A.; Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: neuroprotective effect of resveratrol. Toxicol In Vitro 2014,28(4),544-551

Wang R.; Liu Y.Y.; Liu X.Y.; Jia S.W.; Zhao J.; Cui D.; Wang L.; Resveratrol protects neurons and the myocardium by reducing oxidative stress and ameliorating mitochondria damage in a cerebral ischemia rat model. Cell Physiol Biochem 2014,34(3),854-864

Jang J.H.; Surh Y.J.; Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 2003,34(8),1100-1110

Karuppagounder S.S.; Pinto J.T.; Xu H.; Chen H.L.; Beal M.F.; Gibson G.E.; Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 2009,54(2),111-118

Lu K.T.; Ko M.C.; Chen B.Y.; Huang J.C.; Hsieh C.W.; Lee M.C.; Chiou R.Y.; Wung B.S.; Peng C.H.; Yang Y.L.; Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J Agric Food Chem 2008,56(16),6910-6913

Khan M.M.; Ahmad A.; Ishrat T.; Khan M.B.; Hoda M.N.; Khuwaja G.; Raza S.S.; Khan A.; Javed H.; Vaibhav K.; Islam F.; Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 2010,1328,139-151

Ferretta A.; Gaballo A.; Tanzarella P.; Piccoli C.; Capitanio N.; Nico B.; Annese T.; Di Paola M.; Dell’aquila C.; De Mari M.; Ferranini E.; Bonifati V.; Pacelli C.; Cocco T.; Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta 2014,1842(7),902-915

Mancuso R.; del Valle J.; Modol L.; Martinez A.; Granado-Serrano A.B.; Ramirez-Núñez O.; Pallás M.; Portero-Otin M.; Osta R.; Navarro X.; Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 2014,11(2),419-432

van der Merwe C.; van Dyk H.C.; Engelbrecht L.; van der Westhuizen F.H.; Kinnear C.; Loos B.; Bardien S.; Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol Neurobiol 2017,54(4),2752-2762

Pandareesh M.D.; Shrivash M.K.; Naveen Kumar H.N.; Misra K.; Srinivas Bharath M.M.; Curcumin monoglucoside shows improved bioavailability and mitigates rotenone induced neurotoxicity in cell and drosophila models of Parkinson’s disease. Neurochem Res 2016,41(11),3113-3128

Hamaguchi T.; Ono K.; Yamada M.; Anti-amyloidogenic therapies: strategies for prevention and treatment of Alzheimer’s disease. Cell Mol Life Sci 2006,63(13),1538-1552

Lim G.P.; Chu T.; Yang F.; Beech W.; Frautschy S.A.; Cole G.M.; The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001,21(21),8370-8377

Baum L.; Ng A.; Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 2004,6(4),367-377

Lee J.S.; Surh Y.J.; Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 2005,224(2),171-184

Hickey M.A.; Zhu C.; Medvedeva V.; Lerner R.P.; Patassini S.; Franich N.R.; Maiti P.; Frautschy S.A.; Zeitlin S.; Levine M.S.; Chesselet M.F.; Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol Neurodegener 2012,7,12

Sandhir R.; Yadav A.; Mehrotra A.; Sunkaria A.; Singh A.; Sharma S.; Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med 2014,16(1),106-118

Wu J.; Li Q.; Wang X.; Yu S.; Li L.; Wu X.; Chen Y.; Zhao J.; Zhao Y.; Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One 2013,8(3)

Ghoneim A.I.; Abdel-Naim A.B.; Khalifa A.E.; El-Denshary E.S.; Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol Res 2002,46(3),273-279

Thiyagarajan M.; Sharma S.S.; Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 2004,74(8),969-985

Wang Q.; Sun A.Y.; Simonyi A.; Jensen M.D.; Shelat P.B.; Rottinghaus G.E.; MacDonald R.S.; Miller D.K.; Lubahn D.E.; Weisman G.A.; Sun G.Y.; Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 2005,82(1),138-148

Liu L.; Zhang W.; Wang L.; Li Y.; Tan B.; Lu X.; Deng Y.; Zhang Y.; Guo X.; Mu J.; Yu G.; Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem Res 2014,39(7),1322-1331

Zhao B.; Natural antioxidants protect neurons in Alzheimer’s disease and Parkinson’s disease. Neurochem Res 2009,34(4),630-638

Zaveri N.T.; Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci 2006,78(18),2073-2080

Mandel S.A.; Amit T.; Weinreb O.; Reznichenko L.; Youdim M.B.; Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther 2008,14(4),352-365

Zhang H.S.; Wu T.C.; Sang W.W.; Ruan Z.; EGCG inhibits Tat-induced LTR transactivation: role of Nrf2, AKT, AMPK signaling pathway. Life Sci 2012,90(19-20),747-754

Castellano-González G.; Pichaud N.; Ballard J.W.; Bessede A.; Marcal H.; Guillemin G.J.; Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome C oxidase in human cultured neurons and astrocytes. Oncotarget 2016,7(7),7426-7440

Chan Y.C.; Hosoda K.; Tsai C.J.; Yamamoto S.; Wang M.F.; Favorable effects of tea on reducing the cognitive deficits and brain morphological changes in senescence-accelerated mice. J Nutr Sci Vitaminol (Tokyo) 2006,52(4),266-273

Schroeder E.K.; Kelsey N.A.; Doyle J.; Breed E.; Bouchard R.J.; Loucks F.A.; Harbison R.A.; Linseman D.A.; Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid Redox Signal 2009,11(3),469-480

Rezai-Zadeh K.; Shytle D.; Sun N.; Mori T.; Hou H.; Jeanniton D.; Ehrhart J.; Townsend K.; Zeng J.; Morgan D.; Hardy J.; Town T.; Tan J.; Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 2005,25(38),8807-8814

Caruana M.; Vassallo N.; Tea polyphenols in Parkinson’s disease. Adv Exp Med Biol 2015,863,117-137

Mandel S.A.; Avramovich-Tirosh Y.; Reznichenko L.; Zheng H.; Weinreb O.; Amit T.; Youdim M.B.; Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals 2005,14(1-2),46-60

Kumar P.; Kumar A.; Protective effects of epigallocatechin gallate following 3-nitropropionic acid-induced brain damage: possible nitric oxide mechanisms. Psychopharmacology (Berl) 2009,207(2),257-270

Brouillet E.; Condé F.; Beal M.F.; Hantraye P.; Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 1999,59(5),427-468

Sriraksa N.; Wattanathorn J.; Muchimapura S.; Tiamkao S.; Brown K.; Chaisiwamongkol K.; Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evid Based Complement Alternat Med 2012

Yao Y.; Han D.D.; Zhang T.; Yang Z.; Quercetin improves cognitive deficits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons. Phytother Res 2010,24(1),136-140

Solfrizzi V.; Colacicco A.M.; D’Introno A.; Capurso C.; Parigi A.D.; Capurso S.A.; Torres F.; Capurso A.; Panza F.; Macronutrients, aluminium from drinking water and foods, and other metals in cognitive decline and dementia. J Alzheimers Dis 2006,10(2-3),303-330

Yasui M.; Kihira T.; Ota K.; Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology 1992,13(3),593-600

Forbes W.F.; Gentleman J.F.; Maxwell C.J.; Concerning the role of aluminum in causing dementia. Exp Gerontol 1995,30(1),23-32

Sharma D.R.; Wani W.Y.; Sunkaria A.; Kandimalla R.J.; Verma D.; Cameotra S.S.; Gill K.D.; Quercetin protects against chronic aluminum-induced oxidative stress and ensuing biochemical, cholinergic, and neurobehavioral impairments in rats. Neurotox Res 2013,23(4),336-357

Sharma D.R.; Wani W.Y.; Sunkaria A.; Kandimalla R.J.; Sharma R.K.; Verma D.; Bal A.; Gill K.D.; Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience 2016,324,163-176

Sandhir R.; Mehrotra A.; Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease. Biochim Biophys Acta 2013,1832(3),421-430

Vepsäläinen S.; Koivisto H.; Pekkarinen E.; Mäkinen P.; Dobson G.; McDougall G.J.; Stewart D.; Haapasalo A.; Karjalainen R.O.; Tanila H.; Hiltunen M.; Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J Nutr Biochem 2013,24(1),360-370

Ansari M.A.; Abdul H.M.; Joshi G.; Opii W.O.; Butterfield D.A.; Protective effect of quercetin in primary neurons against Abeta(1-42): relevance to Alzheimer’s disease. J Nutr Biochem 2009,20(4),269-275

Wang D.M.; Li S.Q.; Wu W.L.; Zhu X.Y.; Wang Y.; Yuan H.Y.; Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem Res 2014,39(8),1533-1543

Davis J.M.; Murphy E.A.; Carmichael M.D.; Davis B.; Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol 2009,296(4),R1071-R1077

Schuppan D.; Gorrell M.D.; Klein T.; Mark M.; Afdhal N.H.; The challenge of developing novel pharmacological therapies for non-alcoholic steatohepatitis. Liver Int 2010,30(6),795-808

Grattagliano I.; Portincasa P.; Palmieri V.O.; Palasciano G.; Managing nonalcoholic fatty liver disease: recommendations for family physicians. Can Fam Physician 2007,53(5),857-863

McGill M.R.; Du K.; Weemhoff J.L.; Jaeschke H.; Critical review of resveratrol in xenobiotic-induced hepatotoxicity. Food Chem Toxicol 2015,86,309-318

Vera-Ramirez L.; Pérez-Lopez P.; Varela-Lopez A.; Ramirez-Tortosa M.; Battino M.; Quiles J.L.; Curcumin and liver disease. Biofactors 2013,39(1),88-100

Jaeschke H.; Williams C.D.; McGill M.R.; Xie Y.; Ramachandran A.; Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol 2013,55,279-289

Nair D.G.; Weiskirchen R.; Al-Musharafi S.K.; The use of marine-derived bioactive compounds as potential hepatoprotective agents. Acta Pharmacol Sin 2015,36(2),158-170

Zhang A.; Sun H.; Wang X.; Recent advances in natural products from plants for treatment of liver diseases. Eur J Med Chem 2013,63,570-577

Girish C.; Pradhan S.C.; Indian herbal medicines in the treatment of liver diseases: problems and promises. Fundam Clin Pharmacol 2012,26(2),180-189

Zhao C.Q.; Zhou Y.; Ping J.; Xu L.M.; Traditional Chinese medicine for treatment of liver diseases: progress, challenges and opportunities. J Integr Med 2014,12(5),401-408

Seeff L.B.; Bonkovsky H.L.; Navarro V.J.; Wang G.; Herbal products and the liver: a review of adverse effects and mechanisms. Gastroenterology 2015,48(3),517-532e513

Plin C.; Tillement J.P.; Berdeaux A.; Morin D.; Resveratrol protects against cold ischemia-warm reoxygenation-induced damages to mitochondria and cells in rat liver. Eur J Pharmacol 2005,528(1-3),162-168

Hassan-Khabbar S.; Cottart C.H.; Wendum D.; Vibert F.; Clot J.P.; Savouret J.F.; Conti M.; Nivet-Antoine V.; Postischemic treatment by trans-resveratrol in rat liver ischemia-reperfusion: a possible strategy in liver surgery. Liver Transpl 2008,14(4),451-459

Ajmo J.M.; Liang X.; Rogers C.Q.; Pennock B.; You M.; Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 2008,295(4),G833-G842

Ahn J.; Cho I.; Kim S.; Kwon D.; Ha T.; Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J Hepatol 2008,49(6),1019-1028

Sener G.; Toklu H.Z.; Sehirli A.O.; Velioğlu-Oğünç A.; Cetinel S.; Gedik N.; Protective effects of resveratrol against acetaminophen-induced toxicity in mice. Hepatol Res 2006,35(1),62-68

Du K.; McGill M.R.; Xie Y.; Bajt M.L.; Jaeschke H.; Resveratrol prevents protein nitration and release of endonucleases from mitochondria during acetaminophen hepatotoxicity. Food Chem Toxicol 2015,81,62-70

Rivera H.; Shibayama M.; Tsutsumi V.; Perez-Alvarez V.; Muriel P.; Resveratrol and trimethylated resveratrol protect from acute liver damage induced by CCl4 in the rat. J Appl Toxicol 2008,28(2),147-155

Meng Y.; Ma Q.Y.; Kou X.P.; Xu J.; Effect of resveratrol on activation of nuclear factor kappa-B and inflammatory factors in rat model of acute pancreatitis. World J Gastroenterol 2005,11(4),525-528

Sha H.; Ma Q.; Jha R.K.; Xu F.; Wang L.; Wang Z.; Zhao Y.; Fan F.; Resveratrol ameliorates hepatic injury via the mitochondrial pathway in rats with severe acute pancreatitis. Eur J Pharmacol 2008,601(1-3),136-142

Baur J.A.; Pearson K.J.; Price N.L.; Jamieson H.A.; Lerin C.; Kalra A.; Prabhu V.V.; Allard J.S.; Lopez-Lluch G.; Lewis K.; Pistell P.J.; Poosala S.; Becker K.G.; Boss O.; Gwinn D.; Wang M.; Ramaswamy S.; Fishbein K.W.; Spencer R.G.; Lakatta E.G.; Le Couteur D.; Shaw R.J.; Navas P.; Puigserver P.; Ingram D.K.; de Cabo R.; Sinclair D.A.; Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006,444(7117),337-342

Lagouge M.; Argmann C.; Gerhart-Hines Z.; Meziane H.; Lerin C.; Daussin F.; Messadeq N.; Milne J.; Lambert P.; Elliott P.; Geny B.; Laakso M.; Puigserver P.; Auwerx J.; Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006,127(6),1109-1122

Hou X.; Xu S.; Maitland-Toolan K.A.; Sato K.; Jiang B.; Ido Y.; Lan F.; Walsh K.; Wierzbicki M.; Verbeuren T.J.; Cohen R.A.; Zang M.; SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 2008,283(29),20015-20026

Poulsen M.M.; Larsen J.O.; Hamilton-Dutoit S.; Clasen B.F.; Jessen N.; Paulsen S.K.; Kjaer T.N.; Richelsen B.; Pedersen S.B.; Resveratrol up-regulates hepatic uncoupling protein 2 and prevents development of nonalcoholic fatty liver disease in rats fed a high-fat diet. Nutr Res 2012,32(9),701-708

Morikawa T.; Matsuda H.; Ninomiya K.; Yoshikawa M.; Medicinal foodstuffs. XXIX. Potent protective effects of sesquiterpenes and curcumin from Zedoariae Rhizoma on liver injury induced by D-galactosamine/lipopolysaccharide or tumor necrosis factor-alpha. Biol Pharm Bull 2002,25(5),627-631

Kaur G.; Tirkey N.; Bharrhan S.; Chanana V.; Rishi P.; Chopra K.; Inhibition of oxidative stress and cytokine activity by curcumin in amelioration of endotoxin-induced experimental hepatoxicity in rodents. Clin Exp Immunol 2006,145(2),313-321

Shapiro H.; Ashkenazi M.; Weizman N.; Shahmurov M.; Aeed H.; Bruck R.; Curcumin ameliorates acute thioacetamide-induced hepatotoxicity. J Gastroenterol Hepatol 2006,21(2),358-366

Mouzaoui S.; Rahim I.; Djerdjouri B.; Aminoguanidine and curcumin attenuated tumor necrosis factor (TNF)-α-induced oxidative stress, colitis and hepatotoxicity in mice. Int Immunopharmacol 2012,12(1),302-311

Rukkumani R.; Sri Balasubashini M.; Vishwanathan P.; Menon V.P.; Comparative effects of curcumin and photo-irradiated curcumin on alcohol- and polyunsaturated fatty acid-induced hyperlipidemia. Pharmacol Res 2002,46(3),257-264

Ramirez-Tortosa M.C.; Ramirez-Tortosa C.L.; Mesa M.D.; Granados S.; Gil A.; Quiles J.L.; Curcumin ameliorates rabbits’s steatohepatitis via respiratory chain, oxidative stress, and TNF-alpha. Free Radic Biol Med 2009,47(7),924-931

Kuo J.J.; Chang H.H.; Tsai T.H.; Lee T.Y.; Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int J Mol Med 2012,30(3),673-679

Ren Y.; Deng F.; Zhu H.; Wan W.; Ye J.; Luo B.; Effect of epigallocatechin-3-gallate on iron overload in mice with alcoholic liver disease. Mol Biol Rep 2011,38(2),879-886

Giakoustidis D.E.; Giakoustidis A.E.; Iliadis S.; Koliakou K.; Antoniadis N.; Kontos N.; Papanikolaou V.; Papageorgiou G.; Kaldrimidou E.; Takoudas D.; Attenuation of liver ischemia/reperfusion induced apoptosis by epigallocatechin-3-gallate via down-regulation of NF-kappaB and c-Jun expression. J Surg Res 2010,159(2),720-728

Bose M.; Lambert J.D.; Ju J.; Reuhl K.R.; Shapses S.A.; Yang C.S.; The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 2008,138(9),1677-1683

Kaviarasan S.; Ramamurthy N.; Gunasekaran P.; Varalakshmi E.; Anuradha C.V.; Epigallocatechin-3-gallate(-)protects Chang liver cells against ethanol-induced cytotoxicity and apoptosis. Basic Clin Pharmacol Toxicol 2007,100(3),151-156

Shen K.; Feng X.; Su R.; Xie H.; Zhou L.; Zheng S.; Epigallocatechin 3-gallate ameliorates bile duct ligation induced liver injury in mice by modulation of mitochondrial oxidative stress and inflammation. PLoS One 2015,10(5)

Gan L.; Meng Z.J.; Xiong R.B.; Guo J.Q.; Lu X.C.; Zheng Z.W.; Deng Y.P.; Luo B.D.; Zou F.; Li H.; Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice. Acta Pharmacol Sin 2015,36(5),597-605

Bischoff S.C.; Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 2008,11(6),733-740

Pavanato A.; Tuñón M.J.; Sánchez-Campos S.; Marroni C.A.; Llesuy S.; González-Gallego J.; Marroni N.; Effects of quercetin on liver damage in rats with carbon tetrachloride-induced cirrhosis. Dig Dis Sci 2003,48(4),824-829

Yao P.; Nussler A.; Liu L.; Hao L.; Song F.; Schirmeier A.; Nussler N.; Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 2007,47(2),253-261

Molina M.F.; Sanchez-Reus I.; Iglesias I.; Benedi J.; Quercetin, a flavonoid antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse liver. Biol Pharm Bull 2003,26(10),1398-1402

Chen X.; Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn Mag 2010,6(22),135-141

Tang Y.; Gao C.; Xing M.; Li Y.; Zhu L.; Wang D.; Yang X.; Liu L.; Yao P.; Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food Chem Toxicol 2012,50(5),1194-1200

Mandal A.K.; Das S.; Basu M.K.; Chakrabarti R.N.; Das N.; Hepatoprotective activity of liposomal flavonoid against arsenite-induced liver fibrosis. J Pharmacol Exp Ther 2007,320(3),994-1001

Jung C.H.; Cho I.; Ahn J.; Jeon T.I.; Ha T.Y.; Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytother Res 2013,27(1),139-143

Granado-Serrano A.B.; Martín M.A.; Bravo L.; Goya L.; Ramos S.; Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chem Biol Interact 2012,195(2),154-164

Victor V.M.; Rocha M.; Targeting antioxidants to mitochondria: a potential new therapeutic strategy for cardiovascular diseases. Curr Pharm Des 2007,13(8),845-863

Taegtmeyer H.; Cardiac metabolism as a target for the treatment of heart failure. Circulation 2004,110(8),894-896

Neubauer S.; The failing heart-an engine out of fuel. N Engl J Med 2007,356(11),1140-1151

Sung M.M.; Hamza S.M.; Dyck J.R.; Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal 2015,22(17),1606-1630

Parodi-Rullan R.; Barreto-Torres G.; Ruiz L.; Casasnovas J.; Javadov S.; Direct renin inhibition exerts an anti-hypertrophic effect associated with improved mitochondrial function in post-infarction heart failure in diabetic rats. Cell Physiol Biochem 2012,29(5-6),841-850

Cai H.; Harrison D.G.; Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000,87(10),840-844

Willcox B.J.; Curb J.D.; Rodriguez B.L.; Antioxidants in cardiovascular health and disease: key lessons from epidemiologic studies. Am J Cardiol 2008,101(10A),75D-86D

Clarke R.; Daly L.; Robinson K.; Naughten E.; Cahalane S.; Fowler B.; Graham I.; Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 1991,324(17),1149-1155

Ladurner A.; Schachner D.; Schueller K.; Pignitter M.; Heiss E.H.; Somoza V.; Dirsch V.M.; Impact of trans-resveratrol-sulfates and -glucuronides on endothelial nitric oxide synthase activity, nitric oxide release and intracellular reactive oxygen species. Molecules 2014,19(10),16724-16736

Arunachalam G.; Yao H.; Sundar I.K.; Caito S.; Rahman I.; SIRT1 regulates oxidant- and cigarette smoke-induced eNOS acetylation in endothelial cells: Role of resveratrol. Biochem Biophys Res Commun 2010,393(1),66-72

de Kreutzenberg S.V.; Ceolotto G.; Papparella I.; Bortoluzzi A.; Semplicini A.; Dalla Man C.; Cobelli C.; Fadini G.P.; Avogaro A.; Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes 2010,59(4),1006-1015

Zhang C.; Feng Y.; Qu S.; Wei X.; Zhu H.; Luo Q.; Liu M.; Chen G.; Xiao X.; Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res 2011,90(3),538-545

Rimbaud S.; Ruiz M.; Piquereau J.; Mateo P.; Fortin D.; Veksler V.; Garnier A.; Ventura-Clapier R.; Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One 2011,6(10)

Mohammadshahi M.; Haidari F.; Soufi F.G.; Chronic resveratrol administration improves diabetic cardiomyopathy in part by reducing oxidative stress. Cardiol J 2014,21(1),39-46

Zhang H.; Morgan B.; Potter B.J.; Ma L.; Dellsperger K.C.; Ungvari Z.; Zhang C.; Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging. Am J Physiol Heart Circ Physiol 2010,299(4),H985-H994

Soufi F.G.; Vardyani M.; Sheervalilou R.; Mohammadi M.; Somi M.H.; Long-term treatment with resveratrol attenuates oxidative stress pro-inflammatory mediators and apoptosis in streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys 2012,31(4),431-438

Tanno M.; Kuno A.; Yano T.; Miura T.; Hisahara S.; Ishikawa S.; Shimamoto K.; Horio Y.; Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J Biol Chem 2010,285(11),8375-8382

Gurusamy N.; Lekli I.; Mukherjee S.; Ray D.; Ahsan M.K.; Gherghiceanu M.; Popescu L.M.; Das D.K.; Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 2010,86(1),103-112

Das S.; Fraga C.G.; Das D.K.; Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB. Free Radic Res 2006,40(10),1066-1075

Gao Z.B.; Chen X.Q.; Hu G.Y.; Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus. Brain Res 2006,1111(1),41-47

Chen C.J.; Yu W.; Fu Y.C.; Wang X.; Li J.L.; Wang W.; Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway. Biochem Biophys Res Commun 2009,378(3),389-393

Morris K.C.; Lin H.W.; Thompson J.W.; Perez-Pinzon M.A.; Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 2011,31(4),1003-1019

Gutiérrez-Pérez A.; Cortés-Rojo C.; Noriega-Cisneros R.; Calderón-Cortés E.; Manzo-Avalos S.; Clemente-Guer-rero M.; Godínez-Hernández D.; Boldogh I.; Saavedra-Molina A.; Protective effects of resveratrol on calcium-induced oxidative stress in rat heart mitochondria. J Bioenerg Biomembr 2011,43(2),101-107

Xu P.; Yao Y.; Guo P.; Wang T.; Yang B.; Zhang Z.; Curcumin protects rat heart mitochondria against anoxia-reoxygenation induced oxidative injury. Can J Physiol Pharmacol 2013,91(9),715-723

Nirmala C.; Puvanakrishnan R.; Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 1996,159(2),85-93

Izem-Meziane M.; Djerdjouri B.; Rimbaud S.; Caffin F.; Fortin D.; Garnier A.; Veksler V.; Joubert F.; Ventura-Clapier R.; Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. Am J Physiol Heart Circ Physiol 2012,302(3),H665-H674

González-Salazar A.; Molina-Jijón E.; Correa F.; Zarco-Márquez G.; Calderón-Oliver M.; Tapia E.; Zazueta C.; Pedraza-Chaverri J.; Curcumin protects from cardiac reperfusion damage by attenuation of oxidant stress and mitochondrial dysfunction. Cardiovasc Toxicol 2011,11(4),357-364

Morimoto T.; Sunagawa Y.; Kawamura T.; Takaya T.; Wada H.; Nagasawa A.; Komeda M.; Fujita M.; Shimatsu A.; Kita T.; Hasegawa K.; The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 2008,118(3),868-878

Nakayama H.; Chen X.; Baines C.P.; Klevitsky R.; Zhang X.; Zhang H.; Jaleel N.; Chua B.H.; Hewett T.E.; Robbins J.; Houser S.R.; Molkentin J.D.; Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 2007,117(9),2431-2444

Aneja R.; Hake P.W.; Burroughs T.J.; Denenberg A.G.; Wong H.R.; Zingarelli B.; Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Mol Med 2004,10(1-6),55-62

Townsend P.A.; Scarabelli T.M.; Pasini E.; Gitti G.; Menegazzi M.; Suzuki H.; Knight R.A.; Latchman D.S.; Stephanou A.; Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB J 2004,18(13),1621-1623

Hirai M.; Hotta Y.; Ishikawa N.; Wakida Y.; Fukuzawa Y.; Isobe F.; Nakano A.; Chiba T.; Kawamura N.; Protective effects of EGCg or GCg, a green tea catechin epimer, against postischemic myocardial dysfunction in guinea-pig hearts. Life Sci 2007,80(11),1020-1032

Devika P.T.; Stanely Mainzen Prince P.; (-)Epigallo-catechingallate protects the mitochondria against the deleterious effects of lipids, calcium and adenosine triphosphate in isoproterenol induced myocardial infarcted male Wistar rats. J Appl Toxicol 2008,28(8),938-944

Chen D.D.; Dong Y.G.; Liu D.; He J.G.; Epigallocatechin-3-gallate attenuates cardiac hypertrophy in hypertensive rats in part by modulation of mitogen-activated protein kinase signals. Clin Exp Pharmacol Physiol 2009,36(9),925-932

Song D.K.; Jang Y.; Kim J.H.; Chun K.J.; Lee D.; Xu Z.; Polyphenol (-)-epigallocatechin gallate during ischemia limits infarct size via mitochondrial K(ATP) channel activation in isolated rat hearts. J Korean Med Sci 2010,25(3),380-386

Young W.; Hotovec R.L.; Romero A.G.; Tea and atherosclerosis. Nature 1967,216(5119),1015-1016

Muramatsu K.; Fukuyo M.; Hara Y.; Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J Nutr Sci Vitaminol (Tokyo) 1986,32(6),613-622

Conquer J.A.; Maiani G.; Azzini E.; Raguzzini A.; Holub B.J.; Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J Nutr 1998,128(3),593-597

Stein J.H.; Keevil J.G.; Wiebe D.A.; Aeschlimann S.; Folts J.D.; Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 1999,100(10),1050-1055

Punithavathi V.R.; Stanely Mainzen Prince P.; Protective effects of combination of quercetin and α-tocopherol on mitochondrial dysfunction and myocardial infarct size in isoproterenol-treated myocardial infarcted rats: biochemical, transmission electron microscopic, and macroscopic enzyme mapping evidences. J Biochem Mol Toxicol 2010,24(5),303-312

Brookes P.S.; Digerness S.B.; Parks D.A.; Darley-Usmar V.; Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. Free Radic Biol Med 2002,32(11),1220-1228

Steinhubl S.R.; Why have antioxidants failed in clinical trials? Am J Cardiol 2008,101(10A),14D-19D

Mecocci P.; Polidori M.C.; Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim Biophys Acta 2012,1822(5),631-638

Singh M.; Arseneault M.; Sanderson T.; Murthy V.; Ramassamy C.; Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 2008,56(13),4855-4873

Testai L.; Rapposelli S.; Martelli A.; Breschi M.C.; Calderone V.; Mitochondrial potassium channels as pharmacological target for cardioprotective drugs. Med Res Rev 2015,35(3),520-553