Tăng Insulin Do Chế Độ Ăn Khác Nhau Ảnh Hưởng Đến Chuyển Hóa Glucose và Protein: Phương Pháp Metabolomics Cao Thông Suốt Trên Chuột

Journal of Physiology and Biochemistry - Tập 69 - Trang 613-623 - 2013
U. Etxeberria1, A. L. de la Garza1, J. A. Martínez1, F. I. Milagro1
1Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain

Tóm tắt

Metabolomics là một công cụ cao thông suất định lượng và xác định toàn bộ bộ metabolite trong dịch sinh học. Khoa học "omics" này đang đóng một vai trò ngày càng tăng trong việc hiểu các cơ chế liên quan đến tiến triển của bệnh. Mục tiêu của nghiên cứu này là xác định xem liệu phương pháp metabolomics không định hướng có thể được áp dụng để điều tra sự khác biệt chuyển hóa giữa chuột béo phì được cho ăn chế độ ăn sucrose mỡ cao (HFS) trong 9 tuần và chuột ăn chế độ đối chứng hay không. Các động vật được cho ăn chế độ HFS đã trở nên béo phì, tăng leptin huyết, tăng glucose huyết, tăng insulin huyết và kháng insulin. Mẫu huyết thanh của động vật nhịn ăn qua đêm đã được phân tích bằng kỹ thuật 1H NMR, và 49 metabolite đã được xác định và định lượng. Những thay đổi sinh hóa quan sát được cho thấy rằng các quá trình chuyển hóa chính như chuyển hóa carbohydrate, β-oxyd hóa, chu trình axit tricarboxylic, đường Kennedy, và chuyển hóa một carbon trung gian folate đã bị thay đổi ở chuột béo. Mức độ lưu thông của hầu hết các axit amin thấp hơn ở động vật béo. Mức độ huyết thanh của axit docosahexaenoic, axit linoleic, axit béo không bão hòa n-6, và tổng số axit béo đa bão hòa cũng đã giảm ở chuột ăn chế độ HFS. Mức độ lưu thông của urê, sáu metabolite tan trong nước (creatine, creatinine, choline, acetyl carnitine, formate, và allantoin), và hai hợp chất lipid (phosphatidylcholine và sphingomyelin) cũng đã giảm đáng kể do việc tiêu thụ chế độ ăn HFS. Nghiên cứu này cung cấp thêm cái nhìn về các cơ chế có thể tham gia vào sự phát triển của béo phì do chế độ ăn. Nó gợi ý rằng tình trạng tăng insulin do chế độ ăn HFS chịu trách nhiệm cho sự giảm mức độ lưu thông của urê, creatinine, và nhiều axit amin, mặc dù có sự gia tăng mức độ glucose huyết thanh.

Từ khóa

#metabolomics #béo phì #insulin #chuyển hóa #chuột

Tài liệu tham khảo

Atzori L, Griffin JL, Noto A, Fanos V (2012) Review metabolomics: a new approach to drug delivery in perinatology. Curr Med Chem 19:4654–4661 Azagury DE, Lautz DB (2011) Obesity overview: epidemiology, health and financial impact, and guidelines for qualification for surgical therapy. Gastrointest Endosc Clin N Am 21:189–201 Barber T, Estornell E, Estelles R, Gomez D, Cabo J (1987) Studies on the role of insulin in N metabolism changes in cafeteria-fed rats. Mol Cell Endocrinol 50:15–22 Blonde-Cynober F, Aussel C, Cynober L (1999) Abnormalities in branched-chain amino acid metabolism in cirrhosis: influence of hormonal and nutritional factors and directions for future research. Clin Nutr 18:5–13 Boque N, Campion J, de la Iglesia R, de la Garza AL, Milagro FI, Roman BS, Banuelos O, Martinez JA (2012) Screening of polyphenolic plant extracts for anti-obesity properties in Wistar rats. J Sci Food Agric. doi:10.1002/jsfa.5884 Boque N, Campion J, Paternain L, Garcia-Diaz DF, Galarraga M, Portillo MP, Milagro FI, Ortiz de Solorzano C, Martinez JA (2009) Influence of dietary macronutrient composition on adiposity and cellularity of different fat depots in Wistar rats. J Physiol Biochem 65:387–395 Breum L, Rasmussen MH, Hilsted J, Fernstrom JD (2003) Twenty-four-hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction. Am J Clin Nutr 77:1112–1118 Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261 Calles-Escandon J, Cunningham J, Felig P (1984) The plasma amino acid response to cafeteria feeding in the rat: influence of hyperphagia, sucrose intake, and exercise. Metabolism 33:364–368 Chagnac A, Weinstein T, Korzets A, Ramadan E, Hirsch J, Gafter U (2000) Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol 278:F817–F822 Chan RS, Woo J (2010) Prevention of overweight and obesity: how effective is the current public health approach. Int J Environ Res Public Health 7:765–783 Connor SC, Hansen MK, Corner A, Smith RF, Ryan TE (2010) Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Mol Biosyst 6:909–921 de Castro Ghizoni CV, Gasparin FR, Junior AS, Carreno FO, Constantin RP, Bracht A, Iwamoto EL, Constantin J (2013) Catabolism of amino acids in livers from cafeteria-fed rats. Mol Cell Biochem 373:265–277 Depeint F, Bruce WR, Shangari N, Mehta R, O'Brien PJ (2006) Mitochondrial function and toxicity: role of B vitamins on the one-carbon transfer pathways. Chem Biol Interact 163:113–132 Duggan GE, Hittel DS, Hughey CC, Weljie A, Vogel HJ, Shearer J (2011) Differentiating short- and long-term effects of diet in the obese mouse using (1) H-nuclear magnetic resonance metabolomics. Diabetes Obes Metab 13:859–862 Elia M, Stubbs RJ, Henry CJ (1999) Differences in fat, carbohydrate, and protein metabolism between lean and obese subjects undergoing total starvation. Obes Res 7:597–604 Felig P, Marliss E, Cahill GF Jr (1969) Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 281:811–816 Fu TF, Rife JP, Schirch V (2001) The role of serine hydroxymethyltransferase isozymes in one-carbon metabolism in MCF-7 cells as determined by (13)C NMR. Arch Biochem Biophys 393:42–50 Ganti S, Weiss RH (2011) Urine metabolomics for kidney cancer detection and biomarker discovery. Urol Oncol 29:551–557 Gibellini F, Smith TK (2010) The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62:414–428 Golay A, Swislocki AL, Chen YD, Jaspan JB, Reaven GM (1986) Effect of obesity on ambient plasma glucose, free fatty acid, insulin, growth hormone, and glucagon concentrations. J Clin Endocrinol Metab 63:481–484 Gregory JF 3rd, Cuskelly GJ, Shane B, Toth JP, Baumgartner TG, Stacpoole PW (2000) Primed, constant infusion with [2H3]serine allows in vivo kinetic measurement of serine turnover, homocysteine remethylation, and transsulfuration processes in human one-carbon metabolism. Am J Clin Nutr 72:1535–1541 Guillet C, Delcourt I, Rance M, Giraudet C, Walrand S, Bedu M, Duche P, Boirie Y (2009) Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. J Clin Endocrinol Metab 94:3044–3050 Hebert SL, Nair KS (2010) Protein and energy metabolism in type 1 diabetes. Clin Nutr 29:13–17 Hugi D, Bruckmaier RM, Blum JW (1997) Insulin resistance, hyperglycemia, glucosuria, and galactosuria in intensively milk-fed calves: dependency on age and effects of high lactose intake. J Anim Sci 75:469–482 Jensen MD, Haymond MW (1991) Protein metabolism in obesity: effects of body fat distribution and hyperinsulinemia on leucine turnover. Am J Clin Nutr 53:172–176 Kaddurah-Daouk R, Rozen S, Matson W, Han X, Hulette CM, Burke JR, Doraiswamy PM, Welsh-Bohmer KA (2011) Metabolomic changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement 7:309–317 Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481 Kawaguchi T, Izumi N, Charlton MR, Sata M (2011) Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology 54:1063–1070 Kim HJ, Kim JH, Noh S, Hur HJ, Sung MJ, Hwang JT, Park JH, Yang HJ, Kim MS, Kwon DY, Yoon SH (2011) Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J Proteome Res 10:722–731 Kuchta KF (2005) Pathophysiologic changes of obesity. Anesthesiol Clin N Am 23:421–429, vi Lee MS, Jung BH, Chung BC, Cho SH, Kim KY, Kwon OS, Nugraha B, Lee YJ (2009) Metabolomics study with gas chromatography–mass spectrometry for predicting valproic acid-induced hepatotoxicity and discovery of novel biomarkers in rat urine. Int J Toxicol 28:392–404 Lomba A, Milagro FI, Garcia-Diaz DF, Marti A, Campion J, Martinez JA (2010) Obesity induced by a pair-fed high fat sucrose diet: methylation and expression pattern of genes related to energy homeostasis. Lipids Health Dis 9:60. doi:10.1186/1476-511X-9-60 Luzi L, Castellino P, DeFronzo RA (1996) Insulin and hyperaminoacidemia regulate by a different mechanism leucine turnover and oxidation in obesity. Am J Physiol 270:E273–E281 Marti A, Martinez-Gonzalez MA, Martinez JA (2008) Interaction between genes and lifestyle factors on obesity. Proc Nutr Soc 67:1–8 Martyn JA, Kaneki M, Yasuhara S (2008) Obesity-induced insulin resistance and hyperglycemia: etiologic factors and molecular mechanisms. Anesthesiology 109:137–148 McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, Benca RM, Biggio J, Boggiano MM, Eisenmann JC, Elobeid M, Fontaine KR, Gluckman P, Hanlon EC, Katzmarzyk P, Pietrobelli A, Redden DT, Ruden DM, Wang C, Waterland RA, Wright SM, Allison DB (2009) Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr 49:868–913 McNiven EM, German JB, Slupsky CM (2011) Analytical metabolomics: nutritional opportunities for personalized health. J Nutr Biochem 22:995–1002 Meek SE, Persson M, Ford GC, Nair KS (1998) Differential regulation of amino acid exchange and protein dynamics across splanchnic and skeletal muscle beds by insulin in healthy human subjects. Diabetes 47:1824–1835 Morris C, O'Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, Brennan L (2012) The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc 71:634–638 Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326 Pang LQ, Liang QL, Wang YM, Ping L, Luo GA (2008) Simultaneous determination and quantification of seven major phospholipid classes in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry and the application in diabetes nephropathy. J Chromatogr B Analyt Technol Biomed Life Sci 869:118–125 Patterson BW, Horowitz JF, Wu G, Watford M, Coppack SW, Klein S (2002) Regional muscle and adipose tissue amino acid metabolism in lean and obese women. Am J Physiol Endocrinol Metab 282:E931–E936 Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269 Rezzi S, Ramadan Z, Fay LB, Kochhar S (2007) Nutritional metabonomics: applications and perspectives. J Proteome Res 6:513–525 Rosini TC, Silva AS, Moraes C (2012) Diet-induced obesity: rodent model for the study of obesity-related disorders. Rev Assoc Med Bras 58:383–387 Rossner S, Walldius G, Bjorvell H (1989) Fatty acid composition in serum lipids and adipose tissue in severe obesity before and after six weeks of weight loss. Int J Obes 13:603–612 Rubio-Aliaga I, Roos B, Sailer M, McLoughlin GA, Boekschoten MV, van Erk M, Bachmair EM, van Schothorst EM, Keijer J, Coort SL, Evelo C, Gibney MJ, Daniel H, Muller M, Kleemann R, Brennan L (2011) Alterations in hepatic one-carbon metabolism and related pathways following a high-fat dietary intervention. Physiol Genomics 43:408–416 Ruggenenti P, Cattaneo D, Loriga G, Ledda F, Motterlini N, Gherardi G, Orisio S, Remuzzi G (2009) Ameliorating hypertension and insulin resistance in subjects at increased cardiovascular risk: effects of acetyl-l-carnitine therapy. Hypertension 54:567–574 Shearer J, Duggan G, Weljie A, Hittel DS, Wasserman DH, Vogel HJ (2008) Metabolomic profiling of dietary-induced insulin resistance in the high fat-fed C57BL/6 J mouse. Diabetes Obes Metab 10:950–958 Solini A, Bonora E, Bonadonna R, Castellino P, DeFronzo RA (1997) Protein metabolism in human obesity: relationship with glucose and lipid metabolism and with visceral adipose tissue. J Clin Endocrinol Metab 82:2552–2558 Spagou K, Theodoridis G, Wilson I, Raikos N, Greaves P, Edwards R, Nolan B, Klapa MI (2011) A GC-MS metabolic profiling study of plasma samples from mice on low- and high-fat diets. J Chromatogr B Analyt Technol Biomed Life Sci 879:1467–1475 Tappy L, Owen OE, Boden G (1988) Effect of hyperinsulinemia on urea pool size and substrate oxidation rates. Diabetes 37:1212–1216 Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A (2002) Desaturation and elongation of Fatty acids and insulin action. Ann N Y Acad Sci 967:183–195 Vinaixa M, Rodriguez MA, Rull A, Beltran R, Blade C, Brezmes J, Canellas N, Joven J, Correig X (2010) Metabolomic assessment of the effect of dietary cholesterol in the progressive development of fatty liver disease. J Proteome Res 9:2527–2538 Wang H, Tso VK, Slupsky CM, Fedorak RN (2010) Metabolomics and detection of colorectal cancer in humans: a systematic review. Future Oncol 6:1395–1406 Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH (2003) Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr 78:91–98 Xie B, Waters MJ, Schirra HJ (2012) Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotechnol 2012:805683. doi:10.1155/2012/805683 Zhang A, Sun H, Wang P, Han Y, Wang X (2012) Recent and potential developments of biofluid analyses in metabolomics. J Proteomics 75:1079–1088