Chẩn đoán ung thư vú ba lần âm tính dựa trên dấu hiệu radiomic trích xuất từ chụp cắt lớp vi tính ngực có tăng cường tương phản trước phẫu thuật
Tóm tắt
Mục tiêu của nghiên cứu này là khám phá giá trị chẩn đoán của các đặc điểm radiomics từ chụp cắt lớp vi tính (CT) trước phẫu thuật đối với ung thư vú ba lần âm tính (TNBC) nhằm cải thiện điều trị cho bệnh nhân mắc ung thư vú.
Tổng cộng 890 bệnh nhân có ung thư vú được nhập viện tại bệnh viện của chúng tôi từ tháng 6 năm 2016 đến tháng 1 năm 2018 đã được phân tích. Họ được chẩn đoán qua phẫu thuật và bệnh lý có khối u và ung thư vú xâm lấn, và đã thực hiện chụp CT ngực với chất cản quang trước phẫu thuật. 300 bệnh nhân được chọn ngẫu nhiên để nghiên cứu, bao gồm 100 bệnh nhân TNBC và 200 bệnh nhân không phải TNBC (NTNBC). Trong số đó, 180 người được sử dụng trong nhóm phát hiện và 120 người được sử dụng trong nhóm xác nhận. Các kiểu phân loại phân tử của ung thư vú ở các bệnh nhân được xác định bằng phương pháp hóa mô miễn dịch. Các đặc điểm radiomics được trích xuất từ hình ảnh CT ba chiều. Phương pháp logistic LASSO được sử dụng để chọn lựa các đặc điểm hình ảnh và tính toán điểm số radiomics. Phân tích đường cong đặc điểm hoạt động nhận biết (ROC) được thực hiện để đánh giá giá trị chẩn đoán của điểm số radiomics đối với TNBC.
Năm đặc điểm hình ảnh được tìm thấy có liên quan đến kiểu phân loại TNBC (
Từ khóa
#chẩn đoán #ung thư vú ba lần âm tính #radiomics #chụp cắt lớp vi tính #chất cản quang #đường cong ROCTài liệu tham khảo
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017;50(1):33.
Torre LA, Siegel RL, Ward EM, Jemal A. Global Cancer incidence and mortality rates and trends--an update. Cancer Epidemiol Biomark Prev. 2016;25(1):16–27.
Prat A, Pineda E, Adamo B, Galvan P, Fernandez A, Gaba L, Diez M, Viladot M, Arance A, Munoz M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015;24(Suppl 2):S26–35.
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66.
Arvold ND, Taghian AG, Niemierko A, Abi Raad RF, Sreedhara M, Nguyen PL, Bellon JR, Wong JS, Smith BL, Harris JR. Age, breast cancer subtype approximation, and local recurrence after breast-conserving therapy. J Clin Oncol. 2011;29(29):3885–91.
Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology. 2008;52(1):108–18.
Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 2008;14(5):1368–76.
Kosok M, Alli-Shaik A, Bay BH, Gunaratne J. Comprehensive Proteomic Characterization Reveals Subclass-Specific Molecular Aberrations within Triple-negative Breast Cancer. iScience. 2020;23(2):100868.
Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet. 2017;389(10087):2430–42.
Prat A, Lluch A, Albanell J, Barry WT, Fan C, Chacon JI, Parker JS, Calvo L, Plazaola A, Arcusa A, et al. Predicting response and survival in chemotherapy-treated triple-negative breast cancer. Br J Cancer. 2014;111(8):1532–41.
Kahraman M, Roske A, Laufer T, Fehlmann T, Backes C, Kern F, Kohlhaas J, Schrors H, Saiz A, Zabler C, et al. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep. 2018;8(1):11584.
Guo Y, Hu Y, Qiao M, Wang Y, Yu J, Li J, Chang C. Radiomics analysis on ultrasound for prediction of biologic behavior in breast invasive ductal carcinoma. Clin Breast Cancer. 2018;18(3):e335–44.
Fontes-Sousa M, Lobo J, Lobo S, Salta S, Amorim M, Lopes P, Antunes L, de Sousa SP, Henrique R, Jeronimo C. Digital imaging-assisted quantification of H3K27me3 immunoexpression in luminal a/B-like, HER2-negative, invasive breast cancer predicts patient survival and risk of recurrence. Mol Med. 2020;26(1):22.
Merino Bonilla JA, Torres Tabanera M, Ros Mendoza LH. Breast cancer in the 21st century: from early detection to new therapies. Radiologia. 2017;59(5):368–79.
Lin WC, Hsu HH, Li CS, Yu JC, Hsu GC, Yu CP, Chang TH, Huang GS. Incidentally detected enhancing breast lesions on chest computed tomography. Korean J Radiol. 2011;12(1):44–51.
Krug KB, Houbois C, Grinstein O, Borggrefe J, Puesken M, Hanstein B, Malter W, Maintz D, Hellmich M. Focal breast lesions in clinical CT Examinations of the Chest: a retrospective analysis. Rofo. 2017;189(10):977–89.
Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast cancer. Breast Cancer Res Treat. 2018;169(2):217–29.
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, They Are Data. Radiology. 2016;278(2):563–77.
Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, Mitra S, Shankar BU, Kikinis R, Haibe-Kains B, et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9(7):e102107.
El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, Chaudhari S, Yang D, Schmitt M, Laforest R, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009;42(6):1162–71.
Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, Corcos L, Visvikis D. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52(3):369–78.
Han J, Choi YL, Kim H, Choi JY, Lee SK, Lee JE, Choi JS, Park S, Choi JS, Kim YD, et al. MMP11 and CD2 as novel prognostic factors in hormone receptor-negative, HER2-positive breast cancer. Breast Cancer Res Treat. 2017;164(1):41–56.
Abubakar M, Guo C, Koka H, Sung H, Shao N, Guida J, Deng J, Li M, Hu N, Zhou B, et al. Clinicopathological and epidemiological significance of breast cancer subtype reclassification based on p53 immunohistochemical expression. NPJ Breast Cancer. 2019;5:20.
Kitajima K, Yamamoto S, Fukushima K, Yamakado K, Katsuura T, Igarashi Y, Kawanaka Y, Mouri M, Hirota S. FDG-PET/CT as a post-treatment restaging tool in urothelial carcinoma: comparison with contrast-enhanced CT. Eur J Radiol. 2016;85(3):593–8.
Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Med Phys. 2003;30(5):979–85.
Huang TM, Kecman V. Gene extraction for cancer diagnosis by support vector machines--an improvement. Artif Intell Med. 2005;35(1–2):185–94.
Jiang Y, Chen C, Xie J, Wang W, Zha X, Lv W, Chen H, Hu Y, Li T, Yu J, et al. Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer. EBioMedicine. 2018;36:171–82.
Zhang JX, Song W, Chen ZH, Wei JH, Liao YJ, Lei J, Hu M, Chen GZ, Liao B, Lu J, et al. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol. 2013;14(13):1295–306.
Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.
Ahn SJ, Kim JH, Park SJ, Han JK. Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol. 2016;85(10):1867–74.
Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RT, Hermann G, Lambin P, Haibe-Kains B, Mak RH, Aerts HJ. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015;114(3):345–50.
Park JH, Ahn JH, Kim SB. How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies. ESMO Open. 2018;3(Suppl 1):e000357.
Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.
Liang C, Huang Y, He L, Chen X, Ma Z, Dong D, Tian J, Liang C, Liu Z. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer. Oncotarget. 2016;7(21):31401–12.
Agner SC, Rosen MA, Englander S, Tomaszewski JE, Feldman MD, Zhang P, Mies C, Schnall MD, Madabhushi A. Computerized image analysis for identifying triple-negative breast cancers and differentiating them from other molecular subtypes of breast cancer on dynamic contrast-enhanced MR images: a feasibility study. Radiology. 2014;272(1):91–9.
Ma W, Zhao Y, Ji Y, Guo X, Jian X, Liu P, Wu S. Breast Cancer molecular subtype prediction by mammographic Radiomic features. Acad Radiol. 2019;26(2):196–201.