DiNAR: revealing hidden patterns of plant signalling dynamics using Differential Network Analysis in R
Tóm tắt
Progress in high-throughput molecular methods accompanied by more complex experimental designs demands novel data visualisation solutions. To specifically answer the question which parts of the specifical biological system are responding in particular perturbation, integrative approach in which experimental data are superimposed on a prior knowledge network is shown to be advantageous. We have developed DiNAR, Differential Network Analysis in R, a user-friendly application with dynamic visualisation that integrates multiple condition high-throughput data and extensive biological prior knowledge. Implemented differential network approach and embedded network analysis allow users to analyse condition-specific responses in the context of topology of interest (e.g. immune signalling network) and extract knowledge concerning patterns of signalling dynamics (i.e. rewiring in network structure between two or more biological conditions). We validated the usability of software on the Arabidopsis thaliana and Solanum tuberosum datasets, but it is set to handle any biological instances. DiNAR facilitates detection of network-rewiring events, gene prioritisation for future experimental design and allows capturing dynamics of complex biological system. The fully cross-platform Shiny App is hosted and freely available at
https://nib-si.shinyapps.io/DiNAR
. The most recent version of the source code is available at
https://github.com/NIB-SI/DiNAR/
with a DOI 10.5281/zenodo.1230523 of the archived version in Zenodo.
Tài liệu tham khảo
Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol. 2012;8(565):1–9. https://doi.org/10.1038/msb.2011.99.
Banf M, Rhee SY. Computational inference of gene regulatory networks: approaches, limitations and opportunities. Biochim Biophys Acta Gene Regul Mech. 2017;1860:41–52. https://doi.org/10.1016/j.bbagrm.2016.09.003.
Wang Y, Thilmony R, Zhao Y, Chen G, Gu YQ. AIM: a comprehensive Arabidopsis interactome module database and related interologs in plants. Database. 2014;2014:1–8. https://doi.org/10.1093/database/bau117.
Costa MCD, Slijkhuis T, Ligterink W, Hilhorst HW, de Ridder D, Nijveen H. CyLineUp: a Cytoscape app for visualizing data in network small multiples. F1000Research 2016;5(May):635. https://f1000research.com/articles/5-635/v1.
Goenawan IH, Bryan K, Lynn DJ. DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics. 2016;32(17):2713–5. https://doi.org/10.1093/bioinformatics/btw187.
Li M, Yang J, Wu FX, Pan Y, Wang J. DyNetViewer: a Cytoscape app for dynamic network construction, analysis and visualization. Bioinformatics. 2017;34:1597–9. https://doi.org/10.1093/bioinformatics/btx821.
Landeghem SV, Parys TV, Dubois M, Inzé D, de Peer YV. Diffany: an ontology-driven framework to infer, visualise and analyse differential molecular networks. BMC Bioinf. 2016;17:18. https://doi.org/10.1186/s12859-015-0863-y.
Akhmedov M, Kedaigle A, Chong RE, Montemanni R, Bertoni F, Fraenkel E, Kwee I. PCSF: an R-package for network-based interpretation of high-throughput data. PLoS Comput Biol. 2017;13(7):1–7. https://doi.org/10.1371/journal.pcbi.1005694.
Choi D, Choi J, Kang B, Lee S, Hyun Cho Y, Hwang I, Hwang D. iNID: an analytical framework for identifying network models for interplays among developmental signaling in Arabidopsis. Mol Plant. 2014;7(5):792–813. https://doi.org/10.1093/mp/sst173.
Team RC. R: a language and environment for statistical computing 2016. https://www.R-project.org/. Accessed 26 April 2018.
Blejec A. animatoR: dynamic graphics in R 2016. https://doi.org/10.5281/zenodo.60228. Accessed 26 April 2018.
Almende B, Benoit T, Titouan R. visNetwork: network visualization using ’vis.js’ library 2017. https://github.com/datastorm-open/visNetwork. Accessed 26 April 2018.
Bender-deMoll S. ndtv: network dynamic temporal visualizations 2016. http://statnet.org. Accessed 26 April 2018.
Miljkovic D, Stare T, Mozetič I, Podpečan V, Petek M, Witek K, Dermastia M, Lavrač N, Gruden K. Signalling network construction for modelling plant defence response. PLOS ONE. 2012;7(12):1–18. https://doi.org/10.1371/journal.pone.0051822.
Ramšak Ž, Coll A, Stare T, Tzfadia O, Baebler Š, Van de Peer Y, Gruden K. Network modelling unravels mechanisms of crosstalk between ethylene and salicylate signalling in potato. Plant Physiol. 2018;. https://doi.org/10.1104/pp.18.00450.
Csárdi G, Nepusz T. The igraph software package for complex network research. InterJournal Complex Syst. 2006;1695:1–9. http://igraph.org. Accessed 26 April 2018.
Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Mons B. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. https://doi.org/10.1038/sdata.2016.18.
Ramšak V, Baebler V, Rotter A, Korbar M, Mozetič I, Usadel B, Gruden K. GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology. Nucl Acids Res. 2014;42(D1):D1167–75. https://doi.org/10.1093/nar/gkt1056.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
yWORKS GmbH: yEd Graph Editor. https://www.yworks.com/products/yed. Accessed 26 April 2018.
Alazem M, Lin NS. Roles of plant hormones in the regulation of host-virus interactions. Mol Plant Pathol. 2015;16(5):529–40. https://doi.org/10.1111/mpp.12204.
Vos IA, Moritz L, Pieterse CMJ, Van Wees SCM. Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Front Plant Sci. 2015;6:639. https://doi.org/10.3389/fpls.2015.00639.
Lewis LA, Polanski K, de Torres-Zabala M, Jayaraman S, Bowden L, Moore J, Grant M. Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomato DC3000. Plant Cell. 2015;27(11):3038–64. https://doi.org/10.1105/tpc.15.00471.
Stare T, Ramšak Ž, Blejec A, Stare K, Turnšek N, Weckwerth W, Wienkoop S, Vodnik D, Gruden K. Bimodal dynamics of primary metabolism-related responses in tolerant potato-Potato virus Y interaction. BMC Genomics. 2015;16:716. https://doi.org/10.1186/s12864-015-1925-2.
Vlot AC, Dempsey DA, Klessig DF. Salicylic acid, a multifaceted hormone to combat disease. Ann Rev Phytopathol. 2009;47:177–206. https://doi.org/10.1146/annurev.phyto.050908.135202.