Dexamethasone stimulates expression of C-type Natriuretic Peptide in chondrocytes

BMC Musculoskeletal Disorders - Tập 7 Số 1 - 2006
Hanga Agoston1, Laurie Baybayan2, Frank Beier2
1CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
2CIHR Group in Skeletal Development and Remodeling, Department of Physiology & Pharmacology, University of Western Ontario, London, Canada

Tóm tắt

Abstract Background Growth of endochondral bones is regulated through the activity of cartilaginous growth plates. Disruption of the physiological patterns of chondrocyte proliferation and differentiation – such as in endocrine disorders or in many different genetic diseases (e.g. chondrodysplasias) – generally results in dwarfism and skeletal defects. For example, glucocorticoid administration in children inhibits endochondral bone growth, but the molecular targets of these hormones in chondrocytes remain largely unknown. In contrast, recent studies have shown that C-type Natriuretic Peptide (CNP) is an important anabolic regulator of cartilage growth, and loss-of-function mutations in the human CNP receptor gene cause dwarfism. We asked whether glucocorticoids could exert their activities by interfering with the expression of CNP or its downstream signaling components. Methods Primary mouse chondrocytes in monolayer where incubated with the synthetic glucocorticoid Dexamethasone (DEX) for 12 to 72 hours. Cell numbers were determined by counting, and real-time PCR was performed to examine regulation of genes in the CNP signaling pathway by DEX. Results We show that DEX does influence expression of key genes in the CNP pathway. Most importantly, DEX significantly increases RNA expression of the gene encoding CNP itself (Nppc). In addition, DEX stimulates expression of Prkg2 (encoding cGMP-dependent protein kinase II) and Npr3 (natriuretic peptide decoy receptor) genes. Conversely, DEX was found to down-regulate the expression of the gene encoding its receptor, Nr3c1 (glucocorticoid receptor), as well as the Npr2 gene (encoding the CNP receptor). Conclusion Our data suggest that the growth-suppressive activities of DEX are not due to blockade of CNP signaling. This study reveals a novel, unanticipated relationship between glucocorticoid and CNP signaling and provides the first evidence that CNP expression in chondrocytes is regulated by endocrine factors.

Từ khóa


Tài liệu tham khảo

Karsenty G, Wagner EF: Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002, 2 (4): 389-406. 10.1016/S1534-5807(02)00157-0.

Olsen BR, Reginato AM, Wang W: Bone development. Annu Rev Cell Dev Biol. 2000, 16: 191-220. 10.1146/annurev.cellbio.16.1.191.

Stanton LA, Underhill TM, Beier F: MAP kinases in chondrocyte differentiation. Dev Biol. 2003, 263 (2): 165-175. 10.1016/S0012-1606(03)00321-X.

Lefebvre V, de Crombrugghe B: Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 1998, 16 (9): 529-540. 10.1016/S0945-053X(98)90065-8.

Zheng Q, Zhou G, Morello R, Chen Y, Garcia-Rojas X, Lee B: Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol. 2003, 162 (5): 833-842. 10.1083/jcb.200211089.

Ballock RT, O'Keefe RJ: Physiology and pathophysiology of the growth plate. Birth Defects Res Part C Embryo Today. 2003, 69 (2): 123-143. 10.1002/bdrc.10014.

Robson H, Siebler T, Shalet SM, Williams GR: Interactions between GH, IGF-I, glucocorticoids, and thyroid hormones during skeletal growth. Pediatr Res. 2002, 52 (2): 137-147. 10.1203/01.PDR.0000023494.70201.1C.

van der Eerden BCJ, Karperien M, Wit JM: Systemic and Local Regulation of the Growth Plate. Endocr Rev. 2003, 24 (6): 782-801. 10.1210/er.2002-0033.

Komatsu Y, Chusho H, Tamura N, Yasoda A, Miyazawa T, Suda M, Miura M, Ogawa Y, Nakao K: Significance of C-type natriuretic peptide (CNP) in endochondral ossification: analysis of CNP knockout mice. J Bone Miner Metab. 2002, 20 (6): 331-336. 10.1007/s007740200048.

Avioli LV: Glucocorticoid effects on statural growth. Br J Rheumatol. 1993, 32 (Suppl 2): 27-30.

Baron J, Klein KO, Colli MJ, Yanovski JA, Novosad JA, Bacher JD, Cutler GB: Catch-up growth after glucocorticoid excess: a mechanism intrinsic to the growth plate. Endocrinology. 1994, 135 (4): 1367-1371. 10.1210/en.135.4.1367.

Baron J, Huang Z, Oerter KE, Bacher JD, Cutler GB: Dexamethasone acts locally to inhibit longitudinal bone growth in rabbits. Am J Physiol. 1992, 263 (3 Pt 1): E489-492.

Canalis E, Pereira RC, Delany AM: Effects of glucocorticoids on the skeleton. J Pediatr Endocrinol Metab. 2002, 15 (Suppl 5): 1341-1345.

Yudt MR, Cidlowski JA: The Glucocorticoid Receptor: Coding a Diversity of Proteins and Responses through a Single Gene. Mol Endocrinol. 2002, 16 (8): 1719-1726. 10.1210/me.2002-0106.

Baxter GF: The natriuretic peptidesAn introduction. Basic Res Cardiol. 2004, 99 (2): 71-75. 10.1007/s00395-004-0457-8.

Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA: Guanylyl Cyclases and Signaling by Cyclic GMP. Pharmacol Rev. 2000, 52 (3): 375-414.

Schulz S: C-type natriuretic peptide and guanylyl cyclase B receptor. Peptides. 2005, 26 (6): 1024-1034. 10.1016/j.peptides.2004.08.027.

Kuhn M: Molecular physiology of natriuretic peptide signalling. Basic Res Cardiol. 2004, 99 (2): 76-82. 10.1007/s00395-004-0460-0.

Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, Nakamura K, Nakao K, Kurihara T, Komatsu Y: Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA. 2001, 98: 4016-4021. 10.1073/pnas.071389098.

Tsuji T, Kunieda T: A Loss-of-Function Mutation in Natriuretic Peptide Receptor 2 (Npr2) Gene Is Responsible for Disproportionate Dwarfism in cn/cn Mouse. J Biol Chem. 2005, 280 (14): 14288-14292. 10.1074/jbc.C500024200.

Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Garbers DL: Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. PNAS. 2004, 101 (49): 17300-17305. 10.1073/pnas.0407894101.

Bartels CF, Bukulmez H, Padayatti P, Rhee DK, van Ravenswaaij-Arts C, Pauli RM, Mundlos S, Chitayat D, Shih LY, Al-Gazali LI: Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet. 2004, 75 (1): 27-34. 10.1086/422013.

Olney RC: C-type natriuretic peptide in growth: A new paradigm. Growth Horm IGF Res. 2006, 16S: 6-14. 10.1016/j.ghir.2006.03.016.

Mericq V, Uyeda JA, Barnes KM, De Luca F, Baron J: Regulation of fetal rat bone growth by C-type natriuretic peptide and cGMP. Pediatr Res. 2000, 47 (2): 189-193.

Yasoda A, Ogawa Y, Suda M, Tamura N, Mori K, Sakuma Y, Chusho H, Shiota K, Tanaka K, Nakao K: Natriuretic peptide regulation of endochondral ossification. Evidence for possible roles of the C-type natriuretic peptide/guanylyl cyclase-B pathway. J Biol Chem. 1998, 273 (19): 11695-11700. 10.1074/jbc.273.19.11695.

Krejci P, Masri B, Fontaine V, Mekikian PB, Weis M, Prats H, Wilcox WR: Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis. J Cell Sci. 2005, 118 (21): 5089-5100. 10.1242/jcs.02618.

Yasoda A, Komatsu Y, Chusho H, Miyazawa T, Ozasa A, Miura M, Kurihara T, Rogi T, Tanaka S, Suda M: Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med. 2004, 10 (1): 80-86. 10.1038/nm971.

Woods A, Wang G, Beier F: RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J Biol Chem. 2005, 280 (12): 11626-11634. 10.1074/jbc.M409158200.

Stanton LA, Sabari S, Sampaio AV, Underhill TM, Beier F: p38 MAP kinase signalling is required for hypertrophic chondrocyte differentiation. Biochem J. 2004, 378 (Pt 1): 53-62. 10.1042/BJ20030874.

James CG, Appleton CTG, Ulici V, Underhill TM, Beier F: Microarray Analyses of Gene Expression during Chondrocyte Differentiation Identifies Novel Regulators of Hypertrophy. Mol Biol Cell. 2005, 16 (11): 5316-5333. 10.1091/mbc.E05-01-0084.

Klaus G, Jux C, Fernandez P, Rodriguez J, Himmele R, Mehls O: Suppression of growth plate chondrocyte proliferation by corticosteroids. Pediatr Nephrol. 2000, 14 (7): 612-615. 10.1007/s004670000344.

Smink JJ, Koedam JA, Koster JG, van Buul-Offers SC: Dexamethasone-induced growth inhibition of porcine growth plate chondrocytes is accompanied by changes in levels of IGF axis components. J Endocrinol. 2002, 174 (2): 343-352. 10.1677/joe.0.1740343.

Hainque B, Dominice J, Jaffray P, Ronot X, Adolphe M: Effects of dexamethasone on the growth of cultured rabbit articular chondrocytes:relation with the nuclear glucocorticoid-receptor complex. Ann Rheum Dis. 1987, 46 (2): 146-152.

Silvestrini G, Ballanti P, Patacchioli FR, Mocetti P, Di Grezia R, Wedard BM, Angelucci L, Bonucci E: Evaluation of apoptosis and the glucocorticoid receptor in the cartilage growth plate and metaphyseal bone cells of rats after high-dose treatment with corticosterone. Bone. 2000, 26 (1): 33-42. 10.1016/S8756-3282(99)00245-8.

Chrysis D, Ritzen EM, Savendahl L: Growth retardation induced by dexamethasone is associated with increased apoptosis of the growth plate chondrocytes. J Endocrinol. 2003, 176 (3): 331-337. 10.1677/joe.0.1760331.

Chrysis D, Zaman F, Chagin AS, Takigawa M, Savendahl L: Dexamethasone Induces Apoptosis in Proliferative Chondrocytes through Activation of Caspases and Suppression of the Akt-Phosphatidylinositol 3'-Kinase Signaling Pathway. Endocrinology. 2005, 146 (3): 1391-1397. 10.1210/en.2004-1152.

Nakazawa F, Matsuno H, Yudoh K, Watanabe Y, Katayama R, Kimura T: Corticosteroid treatment induces chondrocyte apoptosis in an experimental arthritis model and in chondrocyte cultures. Clin Exp Rheumatol. 2002, 20 (6): 773-781.

Miyazawa T, Ogawa Y, Chusho H, Yasoda A, Tamura N, Komatsu Y, Pfeifer A, Hofmann F, Nakao K: Cyclic GMP-dependent protein kinase II plays a critical role in C-type natriuretic peptide-mediated endochondral ossification. Endocrinology. 2002, 143 (9): 3604-3610. 10.1210/en.2002-220307.

Oakley RH, Cidlowski JA: Homologous down regulation of the glucocorticoid receptor: the molecular machinery. Crit Rev Eukaryot Gene Expr. 1993, 3 (2): 63-88.

Rahmutula D, Gardner DG: C-Type Natriuretic Peptide Down-Regulates Expression of Its Cognate Receptor in Rat Aortic Smooth Muscle Cells. Endocrinology. 2005, 146 (11): 4968-4974. 10.1210/en.2005-0262.