Development of a new pre-vascularized tissue-engineered construct using pre-differentiated rADSCs, arteriovenous vascular bundle and porous nano-hydroxyapatide-polyamide 66 scaffold

BMC Musculoskeletal Disorders - Tập 14 - Trang 1-14 - 2013
Pei Yang1, Xin Huang2, Jacson Shen3, Chunsheng Wang1, Xiaoqian Dang1, Henry Mankin4,5, Zhenfeng Duan4,5, Kunzheng Wang1
1Department of Orthopaedics, Second Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
2Department of Cardiology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Ion Channel Disease Laboratory, Key Laboratory of Environment and Genes related to Diseases of Education Ministry, Xi’an, P.R. China
3Department of Biological Chemistry, Wellesley College, Wellesley, USA
4Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA
5Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA

Tóm tắt

Development of a pre-vascularized tissue-engineered construct with intrinsic vascular system for cell growth and tissue formation still faces many difficulties due to the complexity of the vascular network of natural bone tissue. The present study was to design and form a new vascularized tissue-engineered construct using pre-differentiated rADSCs, arteriovenous vascular bundle and porous nHA-PA 66 scaffold. rADSCs were pre-differentiated to endothelial cells (rADSCs-Endo) and then incorporated in nHA-PA 66 scaffolds in vitro. Subsequently, in vivo experiments were carried out according to the following groups: Group A (rADSCs-Endo/nHA-PA 66 scaffold with arteriovenous vascular bundle), Group B (rADSCs/nHA-PA 66 scaffold with arteriovenous vascular bundle); Group C (nHA-PA66 scaffold with arteriovenous vascular bundle), Group D (nHA-PA 66 scaffold only). The vessel density and vessel diameter were measured based on histological and immunohistochemical evaluation, furthermore, the VEGF-C, FGF-2 and BMP-2 protein expressions were also evaluated by western blot analysis. The results of in vivo experiments showed that the vessel density and vessel diameter in group A were significantly higher than the other three groups. Between Group B and C, no statistical difference was observed at each time point. In accordance with the results, there were dramatically higher expressions of VEGF-C and FGF-2 protein in Group A than that of Group B, C and D at 2 or 4 weeks. Statistical differences were not observed in VEGF-C and FGF-2 expression between Group B and C. BMP-2 was not expressed in any group at each time point. Compared with muscular wrapping method, arteriovenous vascular bundle implantation could promote vascularization of the scaffold; and the angiogenesis of the scaffold was significantly accelerated when pre-differentiated rADSCs (endothelial differentiation) were added. These positive results implicate the combination of pre-differentiated rADSCs (endothelial differentiation) and arteriovenous vascular bundle may achieve rapidly angiogenesis of biomaterial scaffold.

Tài liệu tham khảo

Fang T, Zhang EW, Sailes FC, McGuire RA, Lineaweaver WC, Zhang F: Vascularized fibular grafts in patients with avascular necrosis of femoral head: a systematic review and meta-analysis. Arch Orthop Trauma Surg. 2013, 133 (1): 1-10. 10.1007/s00402-012-1627-z. Beris AE, Lykissas MG, Korompilias AV, Vekris MD, Mitsionis GI, Malizos KN, Soucacos PN: Vascularized fibula transfer for lower limb reconstruction. Microsurgery. 2011, 31 (3): 205-211. 10.1002/micr.20841. Soucacos PN, Dailiana Z, Beris AE, Johnson EO: Vascularised bone grafts for the management of non-union. Injury. 2006, 37 (Suppl 1): S41-50. Chen AC, Chao EK, Tu YK, Ueng SW: Scaphoid nonunion treated with vascular bone grafts pedicled on the dorsal supra-retinacular artery of the distal radius. J Trauma. 2006, 61 (5): 1192-1197. 10.1097/01.ta.0000234723.78487.52. Damien CJ, Parsons JR: Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater. 1991, 2 (3): 187-208. 10.1002/jab.770020307. Bucholz RW: Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res. 2002, 395: 44-52. Van der Stok J, Van Lieshout EM, El-Massoudi Y, Van Kralingen GH, Patka P: Bone substitutes in the Netherlands - a systematic literature review. Acta Biomater. 2011, 7 (2): 739-750. 10.1016/j.actbio.2010.07.035. de Peppo GM, Marcos-Campos I, Kahler DJ, Alsalman D, Shang L, Vunjak-Novakovic G, Marolt D: Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2013, 110 (21): 8680-8685. 10.1073/pnas.1301190110. Fernandes AM, Herlofsen SR, Karlsen TA, Kuchler AM, Floisand Y, Brinchmann JE: Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage. PLoS One. 2013, 8 (5): e62994-10.1371/journal.pone.0062994. Tanaka Y, Sung KC, Tsutsumi A, Ohba S, Ueda K, Morrison WA: Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation?. Plast Reconstr Surg. 2003, 112 (6): 1636-1644. 10.1097/01.PRS.0000086140.49022.AB. Nguyen LH, Annabi N, Nikkhah M, Bae H, Binan L, Park S, Kang Y, Yang Y, Khademhosseini A: Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng Part B Rev. 2012, 18 (5): 363-382. 10.1089/ten.teb.2012.0012. Rath SN, Arkudas A, Lam CX, Olkowski R, Polykandroitis E, Chroscicka A, Beier JP, Horch RE, Hutmacher DW, Kneser U: Development of a pre-vascularized 3D scaffold-hydrogel composite graft using an arterio-venous loop for tissue engineering applications. J Biomater Appl. 2012, 27 (3): 277-289. 10.1177/0885328211402243. Rath SN, Pryymachuk G, Bleiziffer OA, Lam CX, Arkudas A, Ho ST, Beier JP, Horch RE, Hutmacher DW, Kneser U: Hyaluronan-based heparin-incorporated hydrogels for generation of axially vascularized bioartificial bone tissues: in vitro and in vivo evaluation in a PLDLLA-TCP-PCL-composite system. J Mater Sci Mater Med. 2011, 22 (5): 1279-1291. 10.1007/s10856-011-4300-0. Kokemueller H, Spalthoff S, Nolff M, Tavassol F, Essig H, Stuehmer C, Bormann KH, Rucker M, Gellrich NC: Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application. Int J Oral Maxillofac Surg. 2010, 39 (4): 379-387. 10.1016/j.ijom.2010.01.010. Dong Z, Li B, Zhao J, Ma Q, Bai S, Yang W, Li G, Ma G, Liu Y: Prefabrication of vascularized bone grafts using a combination of bone marrow mesenchymal stem cells and vascular bundles with beta-tricalcium phosphate ceramics. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012, 114 (5 Suppl): S153-159. Matsuda K, Falkenberg KJ, Woods AA, Choi YS, Morrison WA, Dilley RJ: Adipose-derived stem cells promote angiogenesis and tissue formation for in vivo tissue engineering. Tissue Eng Part A. 2013, 19 (11–12): 1327-1335. Morrison WA, Dvir E, Doi K, Hurley JV, Hickey MJ, O’Brien BM: Prefabrication of thin transferable axial-pattern skin flaps: an experimental study in rabbits. Br J Plast Surg. 1990, 43 (6): 645-654. 10.1016/0007-1226(90)90184-2. Ren LL, Ma DY, Feng X, Mao TQ, Liu YP, Ding Y: A novel strategy for prefabrication of large and axially vascularized tissue engineered bone by using an arteriovenous loop. Med Hypotheses. 2008, 71 (5): 737-740. 10.1016/j.mehy.2008.06.032. Risau W: Mechanisms of angiogenesis. Nature. 1997, 386 (6626): 671-674. Bleiziffer O, Hammon M, Naschberger E, Lipnik K, Arkudas A, Rath S, Pryymachuk G, Beier JP, Sturzl M, Horch RE: Endothelial progenitor cells are integrated in newly formed capillaries and alter adjacent fibrovascular tissue after subcutaneous implantation in a fibrin matrix. J Cell Mol Med. 2011, 15 (11): 2452-2461. 10.1111/j.1582-4934.2010.01247.x. Rouwkema J, de Boer J, Van Blitterswijk CA: Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 2006, 12 (9): 2685-2693. 10.1089/ten.2006.12.2685. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C: Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004, 22 (3): 377-384. 10.1634/stemcells.22-3-377. Lombardo E, DelaRosa O, Mancheno-Corvo P, Menta R, Ramirez C, Buscher D: Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential. Tissue Eng Part A. 2009, 15 (7): 1579-1589. 10.1089/ten.tea.2008.0340. Wang X, Li Y, Wei J, de Groot K: Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials. 2002, 23 (24): 4787-4791. 10.1016/S0142-9612(02)00229-6. Zhang X, Li Y-B, Zuo Y, Lv G-Y, Mu Y-H, Li H: Morphology, hydrogen-bonding and crystallinity of nano-hydroxyapatite/polyamide 66 biocomposites. Compos A Appl Sci Manuf. 2007, 38 (3): 843-848. 10.1016/j.compositesa.2006.08.002. Zhu W: Part 1: The study of preparation and biological characteristics of nHA/PA66 composite. Experimental studies of PRP/nHA/PA66 compond Material influence on tendon-bone healing after anterior curciate ligment reconstruction. phD thesis. 2012, Changsha: Central South University: CSU Press, 16-33. An SP, Chen JD, Zhang YH: Preparation of porous β-tricalcium phosphate scaffold with high interconnection. J Tissue Eng Reconstr Surg. 2005, 1 (6): 323-326. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002, 13 (12): 4279-4295. 10.1091/mbc.E02-02-0105. Fan W, Sun D, Liu J, Liang D, Wang Y, Narsinh KH, Li Y, Qin X, Liang J, Tian J: Adipose stromal cells amplify angiogenic signaling via the VEGF/mTOR/Akt pathway in a murine hindlimb ischemia model: a 3D multimodality imaging study. PLoS One. 2012, 7 (9): e45621-10.1371/journal.pone.0045621. Sahar DE, Walker JA, Wang HT, Stephenson SM, Shah AR, Krishnegowda NK, Wenke JC: Effect of endothelial differentiated adipose-derived stem cells on vascularity and osteogenesis in poly(D, L-lactide) scaffolds in vivo. J Craniofac Surg. 2012, 23 (3): 913-918. 10.1097/SCS.0b013e31824e5cd8. Rabie AB: Vascular endothelial growth pattern during demineralized bone matrix induced osteogenesis. Connect Tissue Res. 1997, 36 (4): 337-345. 10.3109/03008209709160232. Kaushiva A, Turzhitsky VM, Darmoc M, Backman V, Ameer GA: A biodegradable vascularizing membrane: a feasibility study. Acta Biomater. 2007, 3 (5): 631-642. 10.1016/j.actbio.2007.03.003. Verheyen CC, de Wijn JR, van Blitterswijk CA, de Groot K: Evaluation of hydroxylapatite/poly(L-lactide) composites: mechanical behavior. J Biomed Mater Res. 1992, 26 (10): 1277-1296. 10.1002/jbm.820261003. Xu Y, Liu L, Li Y, Zhou C, Xiong F, Liu Z, Gu R, Hou X, Zhang C: Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Res. 2008, 1239: 49-55. Han D, Guan X, Wang J, Wei J, Li Q: Rabbit tibial periosteum and saphenous arteriovenous vascular bundle as an in vivo bioreactor to construct vascularized tissue-engineered bone: a feasibility study. Artif Organs. 2013, doi: 10.1111/aor.12124 Cai L, Wang Q, Gu C, Wu J, Wang J, Kang N, Hu J, Xie F, Yan L, Liu X: Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering. Biomaterials. 2011, 32 (33): 8497-8505. 10.1016/j.biomaterials.2011.07.087. Yu H, VandeVord PJ, Mao L, Matthew HW, Wooley PH, Yang SY: Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials. 2009, 30 (4): 508-517. 10.1016/j.biomaterials.2008.09.047. Mikos AG, Sarakinos G, Lyman MD, Ingber DE, Vacanti JP, Langer R: Prevascularization of porous biodegradable polymers. Biotechnol Bioeng. 1993, 42 (6): 716-723. 10.1002/bit.260420606. Laschke MW, Harder Y, Amon M, Martin I, Farhadi J, Ring A, Torio-Padron N, Schramm R, Rucker M, Junker D: Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 2006, 12 (8): 2093-2104. 10.1089/ten.2006.12.2093. Wang X, Shao Z, Zhang HZ, Zhu F, Shen H, Shang ZJ: Experimental study on ectopic prefabrication of vascularized mandible graft with autogenous ribs. Zhonghua Kou Qiang Yi Xue Za Zhi. 2012, 47 (9): 544-546. Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med. 2003, 9 (6): 669-676. 10.1038/nm0603-669. Jabbarzadeh E, Deng M, Lv Q, Jiang T, Khan YM, Nair LS, Laurencin CT: VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2012, 100 (8): 2187-2196. Kampmann A, Lindhorst D, Schumann P, Zimmerer R, Kokemuller H, Rucker M, Gellrich NC, Tavassol F: Additive effect of mesenchymal stem cells and VEGF to vascularization of PLGA scaffolds. Microvascular Res. 2013, doi:pii: S0026-2862(13)00108-8. 10.1016/j.mvr.2013.07.006 Montero RB, Vial X, Nguyen DT, Farhand S, Reardon M, Pham SM, Tsechpenakis G, Andreopoulos FM: bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis. Acta Biomater. 2012, 8 (5): 1778-1791. 10.1016/j.actbio.2011.12.008. Schroeder JW, Rastatter JC, Walner DL: Effect of vascular endothelial growth factor on laryngeal wound healing in rabbits. Otolaryngol Head Neck Surg. 2007, 137 (3): 465-470. 10.1016/j.otohns.2007.04.027. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P: Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003, 174 (3): 101-109. 10.1159/000071150. Hattori H, Sato M, Masuoka K, Ishihara M, Kikuchi T, Matsui T, Takase B, Ishizuka T, Kikuchi M, Fujikawa K: Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs. 2004, 178 (1): 2-12. 10.1159/000081088. Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A: Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004, 110 (3): 349-355. 10.1161/01.CIR.0000135466.16823.D0. Wosnitza M, Hemmrich K, Groger A, Graber S, Pallua N: Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation. Differentiation. 2007, 75 (1): 12-23. DiMuzio P, Tulenko T: Tissue engineering applications to vascular bypass graft development: the use of adipose-derived stem cells. J Vasc Surg. 2007, 45 (Suppl A): A99-103. Borges J, Mueller MC, Padron NT, Tegtmeier F, Lang EM, Stark GB: Engineered adipose tissue supplied by functional microvessels. Tissue Eng. 2003, 9 (6): 1263-1270. 10.1089/10763270360728170. Scherberich A, Galli R, Jaquiery C, Farhadi J, Martin I: Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells. 2007, 25 (7): 1823-1829. 10.1634/stemcells.2007-0124. Yu H, Vandevord PJ, Gong W, Wu B, Song Z, Matthew HW, Wooley PH, Yang SY: Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells. J Orthop Res. 2008, 26 (8): 1147-1152. 10.1002/jor.20609. Ferrara N: Molecular and biological properties of vascular endothelial growth factor. J Mol Med. 1999, 77 (7): 527-543. 10.1007/s001099900019. Shweiki D, Itin A, Neufeld G, Gitay-Goren H, Keshet E: Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. J Clin Invest. 1993, 91 (5): 2235-2243. 10.1172/JCI116450. De Oliveira JF, De Aguiar PF, Rossi AM, Soares GA: Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds. Artif Organs. 2003, 27 (5): 406-411. 10.1046/j.1525-1594.2003.07247.x. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R: Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006, 27 (17): 3230-3237. 10.1016/j.biomaterials.2006.01.031. Lee M, Wu BM, Dunn JC: Effect of scaffold architecture and pore size on smooth muscle cell growth. J Biomed Mater Res A. 2008, 87 (4): 1010-1016. Bai F, Wang Z, Lu J, Liu J, Chen G, Lv R, Wang J, Lin K, Zhang J, Huang X: The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study. Tissue Eng Part A. 2010, 16 (12): 3791-3803. 10.1089/ten.tea.2010.0148. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2474/14/318/prepub