Phát triển các chủng Lactobacilli chịu nhiệt với các đặc tính probiotic cải thiện bằng phương pháp tiến hóa phòng thí nghiệm thích nghi

Probiotics and Antimicrobial Proteins - Tập 15 - Trang 832-843 - 2022
Jyothna Bommasamudram1, Pradeep Kumar2, Sonal Kapur2, Deepak Sharma2, Somashekar Devappa1
1Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, India
2CSIR-Institute of Microbial Technology, Chandigarh, India

Tóm tắt

Probiotics đóng vai trò quan trọng trong thực phẩm chức năng. Căng thẳng nhiệt và mất nước là hai cơ chế chính dẫn đến sự bất hoạt và mất tính khả thi của probiotics trong quy trình sản xuất. Cần thiết phải phát triển một sinh vật công nghiệp có khả năng chịu nhiệt độ cao hơn trong quá trình xử lý và bảo quản. Nghiên cứu hiện tại nhằm phát triển các chủng Lacticaseibacillus casei N (N) và Lactobacillus helveticus NRRL B-4526 (H) chịu nhiệt bằng cách thích ứng các chủng kiểu dại với nhiệt độ cao hơn 45 °C thông qua tiến hóa phòng thí nghiệm thích nghi. Đã quan sát thấy sự gia tăng gấp đôi về khối lượng sinh khối ở cả hai chủng đã thích ứng lên đến thế hệ thứ 200, và sau đó vẫn ổn định sau 500 thế hệ. Sự thay đổi hình thái của các chủng đã thích ứng này được quan sát dưới kính hiển vi điện tử quét. Ngoài ra, có sự gia tăng các thuộc tính probiotic của các chủng đã thích ứng này so với các chủng kiểu dại của chúng. Trong hai chủng đã thích ứng, L. casei N-45 cho thấy khả năng chịu đựng cao hơn ở pH axit 3.0 (89.31%), ở mật 0.3% (84.45%), dịch vị dạ dày mô phỏng (79.12%) và dịch ruột mô phỏng (73.86%). Cũng có sự gia tăng khả năng chịu muối (NaCl), hoạt tính quét gốc tự do, tự kết tụ, kết tụ đồng và tính ưa nước của các chủng thích nghi này. Phân tích protein toàn phần bằng phương pháp điện di gel 2D cho thấy sự khác biệt trong biểu hiện protein giữa các chủng kiểu dại và các chủng đã thích ứng. Các điểm protein đặc hiệu từ các chủng đã thích ứng H-45 và N-45 đã được đưa vào phân tích MALDI-TOF MS/MS. Một số protein xác định được công nhận là có vai trò trong việc điều hòa RNA và tổng hợp protein trong điều kiện căng thẳng.

Từ khóa

#probiotics #Lactobacillus casei #Lactobacillus helveticus #chịu nhiệt #tiến hóa phòng thí nghiệm #sinh khối #thuộc tính probiotic

Tài liệu tham khảo

Food and Agriculture Organization of the United Nations World Health Organization FAO, WHO (2002) Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf Helland MH, Wicklund T, Narvhus JA (2004) Growth and metabolism of selected strains of probiotic bacteria, in maize porridge with added malted barley. Int J Food Microbiol 91:305–313. https://doi.org/10.1016/j.ijfoodmicro.2003.07.007 Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x Hussain MA, Hosseini Nezhad M, Sheng Y, Amoafo O (2013) Proteomics and the stressful life of lactobacilli. FEMS Microbiol Lett 349:1–8. https://doi.org/10.1111/1574-6968.12274 Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution - principles and applications for biotechnology. Microb Cell Fact 12:1–17. https://doi.org/10.1186/1475-2859-12-64 Kulkarni S, Haq SF, Samant S, Sukumaran S (2018) Adaptation of Lactobacillus acidophilus to thermal stress yields a thermotolerant variant which also exhibits improved survival at pH 2. Probiotics Antimicrob Proteins 10:717–727. https://doi.org/10.1007/s12602-017-9321-7 Mbye M, Baig MA, AbuQamar SF, El-Tarabily AK, Obaid RS, Osaili TM, Al-Nabulsi AA, Turner MS, Shah NP, Ayyash MM (2020) Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr Rev Food Sci Food Saf 19:1110–1124. https://doi.org/10.1111/1541-4337.12554 Khalil AA (2006) Nutritional improvement of an Egyptian breed of mung bean by probiotic lactobacilli. African J Biotechnol 5:206–212 Erkus O (2007) Thesis: isolation, phenotypic and genotypic characterization of yoghurt starter bacteria. Msc Thesis 117 Kenneth T (2020) Growth of bacterial populations. Todar's online textbook of bacteriology 3. http://textbookofbacteriology.net/growth_3.html Van Heerden JH, Kempe H, Doerr A, Maarleveld T, Nordholt N, Bruggeman FJ (2017) Statistics and simulation of growth of single bacterial cells: illustrations with B. subtilis and E. coli. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-15895-4 Wang J, Dong X, Shao Y, Guo H, Pan L, Hui W, Kwok LY, Zhang H, Zhang W (2017) Genome adaptive evolution of Lactobacillus casei under long-term antibiotic selection pressures. BMC Genomics 18:320. https://doi.org/10.1186/s12864-017-3710-x Hippolyte MT, Augustin M, Hervé TM, Robert N, Somashekar D (2018) Application of response surface methodology to improve the production of antimicrobial biosurfactants by Lactobacillus paracasei subsp. tolerans N2 using sugar cane molasses as substrate. Bioresour Bioprocess 5:48. https://doi.org/10.1186/s40643-018-0234-4 Archer AC, Halami PM (2015) Probiotic attributes of Lactobacillus fermentum isolated from human feces and dairy products. Appl Microbiol Biotechnol 99:8113–8123. https://doi.org/10.1007/s00253-015-6679-x Yadav R, Puniya AK, Shukla P (2016) Probiotic properties of Lactobacillus plantarum RYPR1 from an indigenous fermented beverage Raabadi. Front Microbiol 7:1683. https://doi.org/10.3389/fmicb.2016.01683 Zárate G, Chaia AP, González S, Oliver G (2000) Viability and β-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J Food Prot 63:1214–1221. https://doi.org/10.4315/0362-028X-63.9.1214 Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, Wang Y, ZhangH, (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701. https://doi.org/10.1016/j.foodcont.2009.10.010 Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073. https://doi.org/10.1007/s00217-007-0632-x Kaushik JK, Kumar A, Duary RK, Mohanty AK, Grover S, Batish VK (2009) Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS One 4(12):e80999. https://doi.org/10.1371/journal.pone.0008099 Sharma K, Mahajan R, Attri S, Goel G (2017) Selection of indigenous Lactobacillus paracasei CD4 and Lactobacillus gastricus BTM 7 as probiotic: assessment of traits combined with principal component analysis. J Appl Microbiol 122:1310–1320. https://doi.org/10.1111/jam.13426 Reuben RC, Roy PC, Sarkar SL, Alam RU, Jahid IK (2019) Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol 19:253. https://doi.org/10.1186/s12866-019-1626-0 Du Toit M, Franz CMAP, Dicks LMT, Schillinger U, Haberer P, Warlies B, Ahrens F, Holzapfel WH (1998) Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int J Food Microbiol 40:93–104. https://doi.org/10.1016/S0168-1605(98)00024-5 Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567. https://doi.org/10.1002/(sici)1522-2683(19991201)20:18%3C3551::aid-elps3551%3E3.0.co;2-2 Paim DRSF, Costa SDO, Walter EHM, Tonon RV (2016) Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT - Food Sci Technol 74:21–25. https://doi.org/10.1016/j.lwt.2016.07.022 Haddaji N, Krifi B, Lagha R, Khouadja S, Bakhrouf A (2015) Effect of high temperature on viability of Lactobacillus casei and analysis of secreted and GroEL proteins profiles. African J Bacteriol Res 7:29–34 Brizuela MA, Serrano P, Ferez Y (2001) Studies on probiotics properties of two lactobacillus strains. Brazilian Arch Biol Technol 44:95–99. https://doi.org/10.1590/S1516-89132001000100013 Tajabadi N, Mardan M, Saari N, Mustafa S, Bahreini R, Manap MYA (2013) Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee. Brazilian J Microbiol 44:717–722. https://doi.org/10.1590/S1517-83822013000300008 Capozzi V, Weidmann S, Fiocco D, Rieu A, Hols P, Guzzo J, Spano G (2011) Inactivation of a small heat shock protein affects cell morphology and membrane fluidity in Lactobacillus plantarum WCFS1. Res Microbiol 162:419–425. https://doi.org/10.1016/j.resmic.2011.02.010 De Angelis M, Di Cagno R, Huet C, Crecchio C, Fox PF, Gobbetti M (2004) Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol 70:1336–1346. https://doi.org/10.1128/AEM.70.3.1336-1346.2004 Ferrando V, Quiberoni A, Reinheimer J, Suárez V (2016) Functional properties of Lactobacillus plantarum strains: a study in vitro of heat stress influence. Food Microbiol 54:154–161. https://doi.org/10.1016/j.fm.2015.10.003 Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31:438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x Moorman MA, Thelemann CA, Zhou S, Pestka JJ, Linz JE, Ryser ET (2008) Altered hydrophobicity and membrane composition in stress-adapted Listeria innocua. J Food Prot 71:182–185. https://doi.org/10.4315/0362-028X-71.1.182 de Souza BMS, Borgonovi TF, Casarotti SN, Todorov SD, Penna ALB (2019) Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella Cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics Antimicrob Proteins 11:382–396. https://doi.org/10.1007/s12602-018-9406-y Haddaji N, Mahdhi AK, Krifi B, Ismail MB, Bakhrouf A (2015) Change in cell surface properties of Lactobacillus casei under heat shock treatment. FEMS Microbiol Lett 362:1–7. https://doi.org/10.1093/femsle/fnv047 Leyer GJ, Johnson EA (1993) Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol 59:1842–1847. https://doi.org/10.1128/aem.59.6.1842-1847.1993 Mafu AA, Roy D, Goulet J, Savoie L (1991) Characterization of physicochemical forces involved in adhesion of Listeria monocytogenes to surfaces. Appl Environ Microbiol 57:1969–1973. https://doi.org/10.1128/aem.57.7.1969-1973.1991 Assefa E, Beyene F, Santhanam A (2008) Effect of temperature and pH on the antimicrobial activity of inhibitory substances produced by lactic acid bacteria isolated from Ergo, an Ethiopian traditional fermented milk. African J Microbiol Res 2:229–234 Wang AN, Yi XW, Yu HF, Dong B, Sy Q (2009) Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing-finishing pigs. J Appl Microbiol 107:1140–1148. https://doi.org/10.1111/j.1365-2672.2009.04294.x Grujović M, Mladenović KG, Nikodijević DD, Čomić LR (2019) Autochthonous lactic acid bacteria—presentation of potential probiotics application. Biotechnol Lett 41:1319–1331. https://doi.org/10.1007/s10529-019-02729-8 Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651. https://doi.org/10.1016/j.femsre.2004.09.003 Bove P, Russo P, Capozzi V, Gallone A, Fiocco D (2013) Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiol Res 168:351–359. https://doi.org/10.1016/j.micres.2013.01.004 Chen MJ, Tang HY, Chiang ML (2017) Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food Microbiol 66:20–27. https://doi.org/10.1016/j.fm.2017.03.020 Wu R, Zhang W, Sun T, Wu J, Yue X, He M, Zhang H (2011) Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int J Food Microbiol 147:181–187. https://doi.org/10.1016/j.ijfoodmicro.2011.04.003 Hernández-Alcántara AM, Wacher C, Llamas MG, López P, Chabela MLP (2018) Probiotic properties and stress response of thermotolerant lactic acid bacteria isolated from cooked meat products. LWT - Food Sci Technol 91:249–257. https://doi.org/10.1016/j.lwt.2017.12.063 Pan H, Agarwalla S, Moustakas DT, Moore JF, Stroud RM (2003) Structure of tRNA pseudouridine synthase TruB and its RNA complex: RNA recognition through a combination of rigid docking and induced fit. Proc Natl Acad Sci U S A 100:12648–12653. https://doi.org/10.1073/pnas.2135585100 Foster PG, Huang L, Santi DV, Stroud RM (2000) The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I. Nat Struct Biol 7:23–27. https://doi.org/10.1038/71219 Unciuleac MC, Goldgur Y, Shuman S (2015) Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase. Proc Natl Acad Sci USA 112:13868–13873. https://doi.org/10.1073/pnas.1516536112 Koistinen KM, Plumed-Ferrer C, Lehesranta SJ, Kärenlampi SO, Wright AV (2007) Comparison of growth-phase-dependent cytosolic proteomes of two Lactobacillus plantarum strains used in food and feed fermentations. FEMS Microbiol Lett 273:12–21. https://doi.org/10.1111/j.1574-6968.2007.00775.x Feirer N, Fuqua C (2017) Pterin function in bacteria. Pteridines 28:23–36. https://doi.org/10.1515/pterid-2016-0012 Jiang M, Chen X, Guo ZF, Cao Y, Chen M, Guo Z (2008) Identification and characterization of (1R,6R)-2-succinyl-6-hydroxy-2,4- cyclohexadiene-1-carboxylate synthase in the menaquinone biosynthesis of Escherichia coli. Biochemistry 47:3426–3434. https://doi.org/10.1021/bi7023755