Development of Pea Protein Films with Haskap (Lonicera caerulea) Leaf Extracts from Aqueous Two-phase Systems

Kar Yeen Chong1, Yury Yuryev2, Abhinav Jain2,1, Beth Mason2, Marianne Su-Ling Brooks1
1Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
2Verschuren Centre for Sustainability in Energy0020and the Environment, Cape Breton University, Sydney, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acquah, C., Zhang, Y., Dubé, M. A., & Udenigwe, C. C. (2020). Formation and characterization of protein-based films from yellow pea (Pisum sativum) protein isolate and concentrate for edible applications. Current Research in Food Science, 2, 61–69. https://doi.org/10.1016/j.crfs.2019.11.008

Agboola, S. O., Mofolasayo, O. A., Watts, B. M., & Aluko, R. E. (2010). Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols. Food Research International, 43(2), 582–588. https://doi.org/10.1016/j.foodres.2009.07.013

ASTM International. (2016). ASTM E96/E96M-16 Standard Test Methods for Water Vapor Transmission of Materials. https://doi.org/10.1520/E0096_E0096M-16

ASTM International. (2018). ASTM D882–18 Standard Test Method for Tensile Properties of Thin Plastic Sheeting. https://doi.org/10.1520/D0882-18

Aziz, S. G.-G., & Almasi, H. (2018). Physical characteristics, release properties, and antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (Thymus vulgaris L.) extract-loaded nanoliposomes. Food and Bioprocess Technology, 11(8), 1552–1565. https://doi.org/10.1007/s11947-018-2121-6

Babbar, N., Oberoi, H. S., Uppal, D. S., & Patil, R. T. (2011). Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Research International, 44(1), 391–396. https://doi.org/10.1016/j.foodres.2010.10.001

Banerjee, R., & Chen, H. (1995). Functional Properties of Edible Films Using Whey Protein Concentrate. Journal of Dairy Science, 78(8), 1673–1683. https://doi.org/10.3168/jds.S0022-0302(95)76792-3

Banker, G. S., Gore, A. Y., & Swarbrick, J. (1966). Water vapour transmission properties of free polymer films. Journal of Pharmacy and Pharmacology, 18(7), 457–466. https://doi.org/10.1111/j.2042-7158.1966.tb07906.x

Blossey, R. (2003). Self-cleaning surfaces — virtual realities. Nature Materials, 2(5), 301–306. https://doi.org/10.1038/nmat856

Bonilla, J., & Sobral, P. J. A. (2016). Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Bioscience, 16, 17–25. https://doi.org/10.1016/j.fbio.2016.07.003

Bora, P. S., Brekke, C. J., & Powers, J. R. (1994). Heat induced gelation of pea (Pisum sativum) mixed globulins, vicilin and legumin. Journal of Food Science, 59(3), 594–596. https://doi.org/10.1111/j.1365-2621.1994.tb05570.x

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Briassoulis, D., & Giannoulis, A. (2018). Evaluation of the functionality of bio-based food packaging films. Polymer Testing, 69, 39–51. https://doi.org/10.1016/j.polymertesting.2018.05.003

Calvo, M. E., Castro Smirnov, J. R., & Míguez, H. (2012). Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. Journal of Polymer Science Part B: Polymer Physics, 50(14), 945–956. https://doi.org/10.1002/polb.23087

Chahardoli, A., Jalilian, F., Memariani, Z., Farzaei, M. H., & Shokoohinia, Y. (2020). Chapter 26 - Analysis of organic acids (A. Sanches Silva, S. F. Nabavi, M. Saeedi, & S. M. B. T.-R. A. in N. P. A. Nabavi (eds.); pp. 767–823). Elsevier. https://doi.org/10.1016/B978-0-12-816455-6.00026-3

Choi, W.-S., & Han, J. H. (2001). Physical and mechanical properties of pea-protein-based edible films. Journal of Food Science, 66(2), 319–322. https://doi.org/10.1111/j.1365-2621.2001.tb11339.x

Choi, W. S., & Han, J. H. (2002). Film-forming mechanism and heat denaturation effects on the physical and chemical properties of pea-protein-isolate edible films. Journal of Food Science, 67(4), 1399–1406. https://doi.org/10.1111/j.1365-2621.2002.tb10297.x

Chong, K. Y., & Brooks, M.S.-L. (2021). Effects of recycling on the aqueous two-phase extraction of bioactives from haskap leaves. Separation and Purification Technology, 255, 117755. https://doi.org/10.1016/j.seppur.2020.117755

Chong, K. Y., Stefanova, R., Zhang, J., & Brooks, M.S.-L. (2020a). Aqueous two-phase extraction of bioactive compounds from haskap leaves (Lonicera caerulea): Comparison of salt/ethanol and sugar/propanol systems. Separation and Purification Technology, 252, 117399. https://doi.org/10.1016/j.seppur.2020.117399

Chong, K. Y., Stefanova, R., Zhang, J., & Brooks, M. S. L. (2020b). Extraction of bioactive compounds from haskap leaves (Lonicera caerulea) using salt/ethanol aqueous two-phase flotation. Food and Bioprocess Technology, 13, 2131–2144. https://doi.org/10.1007/s11947-020-02553-3

Cicco, N., Lanorte, M. T., Paraggio, M., Viggiano, M., & Lattanzio, V. (2009). A reproducible, rapid and inexpensive Folin-Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchemical Journal, 91(1), 107–110. https://doi.org/10.1016/j.microc.2008.08.011

Dawson, J. K. (2017). Concentration and content of secondary metabolites in fruit and leaves of Haskap (Lonicera caerulea L.). https://harvest.usask.ca/handle/10388/7819

de Moraes Crizel, T., de Oliveira Rios, A., Alves, D., & V., Bandarra, N., Moldão-Martins, M., & Hickmann Flôres, S. (2018). Biodegradable films based on gelatin and papaya peel microparticles with antioxidant properties. Food and Bioprocess Technology, 11(3), 536–550. https://doi.org/10.1007/s11947-017-2030-0

Eswaranandam, S., Hettiarachchy, N. S., & Johnson, M. G. (2004). Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. Journal of Food Science, 69(3), FMS79–FMS84. https://doi.org/10.1111/j.1365-2621.2004.tb13375.x

European Commission. (2011). Commission Regulation

(EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Official Journal of the European Union, 12, 1-89. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R0010

Fernandes de Oliveira, A. M., Sousa Pinheiro, L., Souto Pereira, C. K., Neves Matias, W., Albuquerque Gomes, R., Souza Chaves, O., Vanderlei de Souza, M. D. F., Nóbrega de Almeida, R., & Simões de Assis, T. (2012). Total phenolic content and antioxidant activity of some Malvaceae family species. Antioxidants, 1(1), 33–43. https://doi.org/10.3390/antiox1010033

Feyzi, S., Milani, E., & Golimovahhed, Q. A. (2018). Grass Pea (Lathyrus sativus L.) Protein isolate: The effect of extraction optimization and drying methods on the structure and functional properties. Food Hydrocolloids, 74, 187–196. https://doi.org/10.1016/j.foodhyd.2017.07.031

Frohberg, P., Pietzsch, M., & Ulrich, J. (2010). Effect of crystalline substances in biodegradable films. Chemical Engineering Research and Design, 88(9), 1148–1152. https://doi.org/10.1016/j.cherd.2010.01.037

Galani, J. H. Y., Patel, J. S., Patel, N. J., & Talati, J. G. (2017). Storage of fruits and vegetables in refrigerator increases their phenolic acids but decreases the total phenolics, anthocyanins and vitamin C with subsequent loss of their antioxidant capacity. In Antioxidants (Vol. 6, Issue 3). https://doi.org/10.3390/antiox6030059

Goudarzi, V., Shahabi-Ghahfarrokhi, I., & Babaei-Ghazvini, A. (2017). Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: Characterization. International Journal of Biological Macromolecules, 95, 306–313. https://doi.org/10.1016/j.ijbiomac.2016.11.065

Gutiérrez, T. J., & González, G. (2016). Effects of exposure to pulsed light on surface and structural properties of edible films made from cassava and taro starch. Food and Bioprocess Technology, 9(11), 1812–1824. https://doi.org/10.1007/s11947-016-1765-3

Halden, R. U. (2010). Plastics and health risks. Annual Review of Public Health, 31(1), 179–194. https://doi.org/10.1146/annurev.publhealth.012809.103714

Han, Y., Yu, M., & Wang, L. (2018). Preparation and characterization of antioxidant soy protein isolate films incorporating licorice residue extract. Food Hydrocolloids, 75, 13–21. https://doi.org/10.1016/j.foodhyd.2017.09.020

Hatti-Kaul, R. (2000). Aqueous two-phase systems: methods and protocols (R. Hatti-Kaul (ed.)). Humana Press. https://doi.org/10.1385/1592590284

Hoffmann, E. M., Breitenbach, A., & Breitkreutz, J. (2011). Advances in orodispersible films for drug delivery. Expert Opinion on Drug Delivery, 8(3), 299–316. https://doi.org/10.1517/17425247.2011.553217

Hoque, M. S., Benjakul, S., & Prodpran, T. (2010). Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Journal of Food Engineering, 96(1), 66–73. https://doi.org/10.1016/j.jfoodeng.2009.06.046

Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., Huang, L., Peng, D., Sattar, A., Shabbir, M. A. B., Hussain, H. I., Ahmed, S., & Yuan, Z. (2016). Aqueous two-phase system (ATPS): An overview and advances in its applications. Biological Procedures Online, 18, 18. https://doi.org/10.1186/s12575-016-0048-8

Janjarasskul, T., Tananuwong, K., Phupoksakul, T., & Thaiphanit, S. (2020). Fast dissolving, hermetically sealable, edible whey protein isolate-based films for instant food and/or dry ingredient pouches. LWT, 134, 110102. https://doi.org/10.1016/j.lwt.2020.110102

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: A review. Food and Bioprocess Technology, 5(6), 2058–2076. https://doi.org/10.1007/s11947-012-0835-4

Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9–19. https://doi.org/10.1016/j.foodhyd.2013.08.030

Kanmani, P., & Rhim, J.-W. (2014). Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging. International Journal of Biological Macromolecules, 68, 258–266. https://doi.org/10.1016/j.ijbiomac.2014.05.011

Kokoszka, S., Debeaufort, F., Lenart, A., & Voilley, A. (2010). Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films. International Dairy Journal, 20(1), 53–60. https://doi.org/10.1016/j.idairyj.2009.07.008

Kowalczyk, D., & Baraniak, B. (2011). Effects of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films. Journal of Food Engineering, 105(2), 295–305. https://doi.org/10.1016/j.jfoodeng.2011.02.037

Kyriakopoulou, K., Pappa, A., Krokida, M., Detsi, A., & Kefalas, P. (2013). Effects of drying and extraction methods on the quality and antioxidant activity of Sea Buckthorn (Hippophae rhamnoides) berries and leaves. Drying Technology, 31(9), 1063–1076. https://doi.org/10.1080/07373937.2013.773907

Lambrecht, M. A., Rombouts, I., & Delcour, J. A. (2016). Denaturation and covalent network formation of wheat gluten, globular proteins and mixtures thereof in aqueous ethanol and water. Food Hydrocolloids, 57, 122–131. https://doi.org/10.1016/j.foodhyd.2016.01.018

Le Dean, A., Mariette, F., Lucas, T., & Marin, M. (2001). Assessment of the state of water in reconstituted milk protein dispersions by nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). LWT - Food Science and Technology, 34(5), 299–305. https://doi.org/10.1006/fstl.2001.0765

López-de-Dicastillo, C., Gómez-Estaca, J., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2012). Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chemistry, 131(4), 1376–1384. https://doi.org/10.1016/j.foodchem.2011.10.002

Mahajan, P. V., Oliveira, F. A. R., & Macedo, I. (2008). Effect of temperature and humidity on the transpiration rate of the whole mushrooms. Journal of Food Engineering, 84(2), 281–288. https://doi.org/10.1016/j.jfoodeng.2007.05.021

Mallegni, N., Phuong, T. V., Coltelli, M.-B., Cinelli, P., & Lazzeri, A. (2018). Poly (lactic acid)(PLA) based tear resistant and biodegradable flexible films by blown film extrusion. Materials, 11(1), 148. https://doi.org/10.3390/ma11010148

Maryam Adilah, Z. A., Jamilah, B., & Nur Hanani, Z. A. (2018). Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocolloids, 74, 207–218. https://doi.org/10.1016/j.foodhyd.2017.08.017

McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–903. https://doi.org/10.1111/j.1365-2621.1993.tb09387.x

Medina Jaramillo, C., Gutiérrez, T. J., Goyanes, S., Bernal, C., & Famá, L. (2016). Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate Polymers, 151, 150–159. https://doi.org/10.1016/j.carbpol.2016.05.025

Melini, V., & Melini, F. (2018). Strategies to extend bread and GF bread shelf-Life: From sourdough to antimicrobial active packaging and nanotechnology. Fermentation, 4(1), 9. https://doi.org/10.3390/fermentation4010009

Mession, J.-L., Chihi, M. L., Sok, N., & Saurel, R. (2015). Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocolloids, 46, 233–243. https://doi.org/10.1016/j.foodhyd.2014.11.025

Mettler Toledo. (2000). Interpreting DSC curves Part 1: Dynamic measurements.

Musso, Y. S., Salgado, P. R., & Mauri, A. N. (2019). Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocolloids, 89(October 2018), 674–681. https://doi.org/10.1016/j.foodhyd.2018.11.036

Mustafa, R. A., Hamid, A. A., Mohamed, S., & Bakar, F. A. (2010). Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. Journal of Food Science, 75(1), C28–C35. https://doi.org/10.1111/j.1750-3841.2009.01401.x

Neužilová, B., Ondrák, L., Čuba, V., & Múčka, V. (2019). Ethanol as a modifier of radiation sensitivity of living cells against UV-C radiation. Radiation Protection Dosimetry, 186(2–3), 191–195. https://doi.org/10.1093/rpd/ncz200

Newsham, D. M. T., & Mendez-Lecanda, E. J. (1982). Isobaric enthalpies of vaporization of water, methanol, ethanol, propan-2-ol, and their mixtures. The Journal of Chemical Thermodynamics, 14(3), 291–301. https://doi.org/10.1016/0021-9614(82)90020-9

Nikolaidis, A., & Moschakis, T. (2018). On the reversibility of ethanol-induced whey protein denaturation. Food Hydrocolloids, 84, 389–395. https://doi.org/10.1016/j.foodhyd.2018.05.051

North, E. J., & Halden, R. U. (2013). Plastics and environmental health: The road ahead. Reviews on Environmental Health, 28(1), 1–8. https://doi.org/10.1515/reveh-2012-0030

Nouri, L., & Mohammadi Nafchi, A. (2014). Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. International Journal of Biological Macromolecules, 66, 254–259. https://doi.org/10.1016/j.ijbiomac.2014.02.044

Oliveira, M. L. N., Malagoni, R. A., & Franco, M. R. (2013). Solubility of citric acid in water, ethanol, n-propanol and in mixtures of ethanol+water. Fluid Phase Equilibria, 352, 110–113. https://doi.org/10.1016/j.fluid.2013.05.014

Oszmiański, J., Wojdyło, A., Gorzelany, J., & Kapusta, I. (2011). Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. Journal of Agricultural and Food Chemistry, 59(24), 12830–12835. https://doi.org/10.1021/jf203052j

Peng, C., Chan, M. N., & Chan, C. K. (2001). The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions. Environmental Science & Technology, 35(22), 4495–4501. https://doi.org/10.1021/es0107531

Phan, T. D., Debeaufort, F., Luu, D., & Voilley, A. (2005). Functional properties of edible agar-based and starch-based films for food quality preservation. Journal of Agricultural and Food Chemistry, 53(4), 973–981. https://doi.org/10.1021/jf040309s

Ramos, Ó. L., Reinas, I., Silva, S. I., Fernandes, J. C., Cerqueira, M. A., Pereira, R. N., Vicente, A. A., Poças, M. F., Pintado, M. E., & Malcata, F. X. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30(1), 110–122. https://doi.org/10.1016/j.foodhyd.2012.05.001

Reinkensmeier, A., Bußler, S., Schlüter, O., Rohn, S., & Rawel, H. M. (2015). Characterization of individual proteins in pea protein isolates and air classified samples. Food Research International, 76, 160–167. https://doi.org/10.1016/j.foodres.2015.05.009

Ribeiro-Santos, R., de Melo, N. R., Andrade, M., Azevedo, G., Machado, A. V., Carvalho-Costa, D., & Sanches-Silva, A. (2018). Whey protein active films incorporated with a blend of essential oils: Characterization and effectiveness. Packaging Technology and Science, 31(1), 27–40. https://doi.org/10.1002/pts.2352

Rodríguez-Martínez, A. V., Sendón, R., Abad, M. J., González-Rodríguez, M. V., Barros-Velázquez, J., Aubourg, S. P., Paseiro-Losada, P., & Rodríguez-Bernaldo de Quirós, A. (2016). Migration kinetics of sorbic acid from polylactic acid and seaweed based films into food simulants. LWT - Food Science and Technology, 65, 630–636. https://doi.org/10.1016/j.lwt.2015.08.029

Roy, F., Boye, J. I., & Simpson, B. K. (2010). Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Research International, 43(2), 432–442. https://doi.org/10.1016/j.foodres.2009.09.002

Sabaté, J., & Soret, S. (2014). Sustainability of plant-based diets: back to the future. The American Journal of Clinical Nutrition, 100(suppl_1), 476S-482S. https://doi.org/10.3945/ajcn.113.071522

Saberi, B., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2017). Physical, barrier, and antioxidant properties of pea starch-guar gum biocomposite edible films by incorporation of natural plant extracts. Food and Bioprocess Technology, 10(12), 2240–2250. https://doi.org/10.1007/s11947-017-1995-z

Sängerlaub, S., Böhmer, M., & Stramm, C. (2013). Influence of stretching ratio and salt concentration on the porosity of polypropylene films containing sodium chloride particles. Journal of Applied Polymer Science, 129(3), 1238–1248. https://doi.org/10.1002/app.38793

Sharma, L., Sharma, H. K., & Saini, C. S. (2018). Edible films developed from carboxylic acid cross-linked sesame protein isolate: Barrier, mechanical, thermal, crystalline and morphological properties. Journal of Food Science and Technology, 55(2), 532–539. https://doi.org/10.1007/s13197-017-2962-4

Shevkani, K., & Singh, N. (2015). Relationship between protein characteristics and film-forming properties of kidney bean, field pea and amaranth protein isolates. International Journal of Food Science and Technology, 50(4), 1033–1043. https://doi.org/10.1111/ijfs.12733

Shi, W., & Dumont, M.-J. (2014). Processing and physical properties of canola protein isolate-based films. Industrial Crops and Products, 52, 269–277. https://doi.org/10.1016/j.indcrop.2013.10.037

Shiku, Y., Hamaguchi, P. Y., & Tanaka, M. (2003). Effect of pH on the preparation of edible films based on fish myofibrillar proteins. Fisheries Science, 69(5), 1026–1032. https://doi.org/10.1046/j.1444-2906.2003.00722.x

Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299C, 152–178.

Sirtori, E., Isak, I., Resta, D., Boschin, G., & Arnoldi, A. (2012). Mechanical and thermal processing effects on protein integrity and peptide fingerprint of pea protein isolate. Food Chemistry, 134(1), 113–121. https://doi.org/10.1016/j.foodchem.2012.02.073

Sivarooban, T., Hettiarachchy, N. S., & Johnson, M. G. (2008). Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Research International, 41(8), 781–785. https://doi.org/10.1016/j.foodres.2008.04.007

Solano-Castillo, C., & Rito-Palomares, M. (2000). Kinetics of phase separation under different process and design parameters in aqueous two-phase systems. Journal of Chromatography B: Biomedical Sciences and Applications, 743(1), 195–201. https://doi.org/10.1016/S0378-4347(00)00060-8

Souza, M. P., Vaz, A. F. M., Silva, H. D., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2015). Development and characterization of an active chitosan-based film containing quercetin. Food and Bioprocess Technology, 8(11), 2183–2191. https://doi.org/10.1007/s11947-015-1580-2

Souza, V. G. L., Rodrigues, P. F., Duarte, M. P., & Fernando, A. L. (2018). Antioxidant migration studies in chitosan films incorporated with plant extracts. In Journal of Renewable Materials (Vol. 6, Issue 5). https://doi.org/10.7569/JRM.2018.634104

Spikes, J. D. (1981). Photodegradation of foods and beverages. In Photochemical and photobiological reviews (pp. 39–85). Springer. https://doi.org/10.1007/978-1-4684-7003-1_2

Takuno, M. (1992). Highly hygroscopic laminate. Google Patents. https://patents.google.com/patent/US5143773A/en

Torres-León, C., Vicente, A. A., Flores-López, M. L., Rojas, R., Serna-Cock, L., Alvarez-Pérez, O. B., & Aguilar, C. N. (2018). Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT, 97, 624–631. https://doi.org/10.1016/j.lwt.2018.07.057

Ustunol, Z., & Mert, B. (2004). Water solubility, mechanical, barrier, and thermal properties of cross-linked whey protein isolate-based films. Journal of Food Science, 69(3), FEP129–FEP133. https://doi.org/10.1111/j.1365-2621.2004.tb13365.x

Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

Wang, S., Marcone, M., Barbut, S., & Lim, L.-T. (2012). The impact of anthocyanin-rich red raspberry extract (ARRE) on the properties of edible soy protein isolate (SPI) films. Journal of Food Science, 77(4), C497–C505. https://doi.org/10.1111/j.1750-3841.2012.02655.x

Yang, J., Zamani, S., Liang, L., & Chen, L. (2021). Extraction methods significantly impact pea protein composition, structure and gelling properties. Food Hydrocolloids, 117, 106678. https://doi.org/10.1016/j.foodhyd.2021.106678

Yuan, Y., Leng, Y., Shao, H., Huang, C., & Shan, K. (2014). Solubility of dl-malic acid in water, ethanol and in mixtures of ethanol+water. Fluid Phase Equilibria, 377, 27–32. https://doi.org/10.1016/j.fluid.2014.06.017

Yue, H.-B., Cui, Y.-D., Shuttleworth, P. S., & Clark, J. H. (2012). Preparation and characterisation of bioplastics made from cottonseed protein. Green Chemistry, 14(7), 2009–2016. https://doi.org/10.1039/C2GC35509D

Zhang, W., Zhu, D., Fan, H., Liu, X., Wan, Q., Wu, X., Liu, P., & Tang, J. Z. (2015). Simultaneous extraction and purification of alkaloids from Sophora flavescens Ait. by microwave-assisted aqueous two-phase extraction with ethanol/ammonia sulfate system. Separation and Purification Technology, 141, 113–123. https://doi.org/10.1016/j.seppur.2014.11.014

Zhou, P., & Labuza, T. P. (2007). Effect of water content on glass transition and protein aggregation of whey protein powders during short-term storage. Food Biophysics, 2(2), 108–116. https://doi.org/10.1007/s11483-007-9037-4

Zhu, L., Lu, Y., Sun, Z., Han, J., & Tan, Z. (2020). The application of an aqueous two-phase system combined with ultrasonic cell disruption extraction and HPLC in the simultaneous separation and analysis of solanine and Solanum nigrum polysaccharide from Solanum nigrum unripe fruit. Food Chemistry, 304, 125383. https://doi.org/10.1016/j.foodchem.2019.125383