Development of Hydrogen Sulfide-Based Therapeutics for Cardiovascular Disease
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wang, R. (2002). Two's company, three's a crowd: Can H2S be the third endogenous gaseous transmitter? The FASEB Journal, 16(13), 1792–1798.
Furchgott, R. F. (1999). Endothelium-derived relaxing factor: Discovery, early studies, and identification as nitric oxide. Bioscience Reports, 19(4), 235–251.
Palmer, R. M., Ferrige, A. G., & Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327(6122), 524–526.
Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V., & Snyder, S. H. (1993). Carbon monoxide: A putative neural messenger. Science, 259(5093), 381–384.
Abe, K., & Kimura, H. (1996). The possible role of hydrogen sulfide as an endogenous neuromodulator. The Journal of Neuroscience, 16(3), 1066–1071.
Hosoki, R., Matsuki, N., & Kimura, H. (1997). The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochemical and Biophysical Research Communications, 237(3), 527–531.
Nicholls, P. (1975). The effect of sulphide on cytochrome aa3. Isosteric and allosteric shifts of the reduced alpha-peak. Biochimica et Biophysica Acta, 396(1), 24–35.
Khan, A. A., Schuler, M. M., Prior, M. G., et al. (1990). Effects of hydrogen sulfide exposure on lung mitochondrial respiratory chain enzymes in rats. Toxicology and Applied Pharmacology, 103(3), 482–490.
Nicholls, P., & Kim, J. K. (1982). Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system. Canadian Journal of Biochemistry, 60(6), 613–623.
Shepherd, G., & Velez, L. I. (2008). Role of hydroxocobalamin in acute cyanide poisoning. The Annals of Pharmacotherapy, 42(5), 661–669.
Julian, D., April, K. L., Patel, S., Stein, J. R., & Wohlgemuth, S. E. (2005). Mitochondrial depolarization following hydrogen sulfide exposure in erythrocytes from a sulfide-tolerant marine invertebrate. The Journal of Experimental Biology, 208(Pt 21), 4109–4122.
Eghbal, M. A., Pennefather, P. S., & O'Brien, P. J. (2004). H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology, 203(1–3), 69–76.
Chen, K. Y., & Morris, J. C. (1972). Oxidation of sulfide by O2: Catalysis and inhibition. Journal of the Sanitary Engineering Division: Proceedings of the American Society of Civil Engineers, 98, 215–227.
Tapley, D. W., Beuttner, G. R., & Shick, J. M. (1999). Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. The Biological Bulletin, 196, 52–56.
Bagarinao, T., & Vetter, R. D. (1992). Sulfide-hemoglobin interactions in the sulfide-tolerant salt-marsh resident, the California killifish Fundulus parvipinnis. Journal of Comparative Physiology B, 162, 614–624.
Kraus, D. W., Doeller, J. E., & Powell, C. S. (1996). Sulfide may directly modify cytoplasmic hemoglobin deoxygenation in Solemya reidi gills. The Journal of Experimental Biology, 199, 1343–1352.
Völkel, S., & Berenbrink, M. K. (2000). Sulphaemoglobin formation in fish: A comparison between the haemoglobin of the sulphide-sensitive rainbow traout (Oncorhynchus mykiss) and of the sulphide-tolerant common carp (Cyprinus carpio). The Journal of Experimental Biology, 203, 1047–1058.
Goodwin, L. R., Francom, D., Dieken, F. P., et al. (1989). Determination of sulfide in brain tissue by gas dialysis/ion chromatography: Postmortem studies and two case reports. Journal of Analytical Toxicology, 13(2), 105–109.
Warenycia, M. W., Goodwin, L. R., Benishin, C. G., et al. (1989). Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochemical Pharmacology, 38(6), 973–981.
Savage, J. C., & Gould, D. H. (1990). Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. Journal of Chromatography, 526(2), 540–545.
Erickson, P. F., Maxwell, I. H., Su, L. J., Baumann, M., & Glode, L. M. (1990). Sequence of cDNA for rat cystathionine gamma-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. The Biochemical Journal, 269(2), 335–340.
Stipanuk, M. H., & Beck, P. W. (1982). Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. The Biochemical Journal, 206(2), 267–277.
Swaroop, M., Bradley, K., Ohura, T., et al. (1992). Rat cystathionine beta-synthase. Gene organization and alternative splicing. The Journal of Biological Chemistry, 267(16), 11455–11461.
Kimura, H. (2000). Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochemical and Biophysical Research Communications, 267(1), 129–133.
Dello Russo, C., Tringali, G., Ragazzoni, E., et al. (2000). Evidence that hydrogen sulphide can modulate hypothalamo-pituitary-adrenal axis function: In vitro and in vivo studies in the rat. Journal of Neuroendocrinology, 12(3), 225–233.
Zhao, W., Zhang, J., Lu, Y., & Wang, R. (2001). The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. The EMBO Journal, 20(21), 6008–6016.
Julian, D., Statile, J. L., Wohlgemuth, S. E., & Arp, A. J. (2002). Enzymatic hydrogen sulfide production in marine invertebrate tissues. Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology, 133(1), 105–115.
Zhao, W., Ndisang, J. F., & Wang, R. (2003). Modulation of endogenous production of H2S in rat tissues. Canadian Journal of Physiology and Pharmacology, 81(9), 848–853.
Shibuya, N., Tanaka, M., Yoshida, M., et al. (2009). 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxidants Redox Signaling, 11(4), 703–714.
Elrod, J. W., Calvert, J. W., Morrison, J., et al. (2007). Hydrogen sulfide attenuates myocardial ischemia–reperfusion injury by preservation of mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15560–15565.
Shibuya, N., Mikami, Y., Kimura, Y., Nagahara, N., & Kimura, H. (2009). Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. Journal of Biochemistry, 146(5), 623–626.
Brancaleone, V., Roviezzo, F., Vellecco, V., et al. (2008). Biosynthesis of H2S is impaired in non-obese diabetic (NOD) mice. British Journal of Pharmacology, 155(5), 673–680.
Chunyu, Z., Junbao, D., Dingfang, B., et al. (2003). The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochemical and Biophysical Research Communications, 302(4), 810–816.
Du, J., Yan, H., & Tang, C. (2003). Endogenous H2S is involved in the development of spontaneous hypertension. Beijing Da Xue Xue Bao, 35(1), 102.
Yang, G., Wu, L., Jiang, B., et al. (2008). H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine gamma-lyase. Science, 322(5901), 587–590.
Perna, A. F., Luciano, M. G., Ingrosso, D., et al. (2009). Hydrogen sulphide-generating pathways in haemodialysis patients: A study on relevant metabolites and transcriptional regulation of genes encoding for key enzymes. Nephrology, Dialysis, Transplantation, 24(12), 3756–3763.
Wu, N., Siow, Y. L., O, K. (2010). Ischemia/reperfusion reduces transcription factor sp1 mediated cystathionine beta-synthase expression in the kidney. Journal of Biological Chemistry. doi: 10.1074/jbc.M110.132142
Ge, Y., Jensen, T. L., Matherly, L. H., & Taub, J. W. (2002). Synergistic regulation of human cystathionine-beta-synthase-1b promoter by transcription factors NF-YA isoforms and Sp1. Biochimica et Biophysica Acta, 1579(2–3), 73–80.
Ge, Y., Matherly, L. H., & Taub, J. W. (2001). Transcriptional regulation of cell-specific expression of the human cystathionine beta-synthase gene by differential binding of Sp1/Sp3 to the -1b promoter. The Journal of Biological Chemistry, 276(47), 43570–43579.
Ishii, I., Akahoshi, N., Yu, X. N., et al. (2004). Murine cystathionine gamma-lyase: Complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. The Biochemical Journal, 381, 113–123.
Dombkowski, R. A., Russell, M. J., Schulman, A. A., Doellman, M. M., & Olson, K. R. (2005). Vertebrate phylogeny of hydrogen sulfide vasoactivity. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 288(1), R243–R252.
Tang, G., Wu, L., Liang, W., & Wang, R. (2005). Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Molecular Pharmacology, 68(6), 1757–1764.
Cheng, Y., Ndisang, J. F., Tang, G., Cao, K., & Wang, R. (2004). Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. American Journal of Physiology. Heart and Circulatory Physiology, 287(5), H2316–H2323.
Leffler, C. W., Parfenova, H., Jaggar, J. H., & Wang, R. (2006). Carbon monoxide and hydrogen sulfide: Gaseous messengers in cerebrovascular circulation. Journal of Applied Physiology, 100(3), 1065–1076.
Kubo, S., Kajiwara, M., & Kawabata, A. (2007). Dual modulation of the tension of isolated gastric artery and gastric mucosal circulation by hydrogen sulfide in rats. Inflammopharmacology, 15(6), 288–292.
Webb, G. D., Lim, L. H., Oh, V. M., et al. (2008). Contractile and vasorelaxant effects of hydrogen sulfide and its biosynthesis in the human internal mammary artery. The Journal of Pharmacology and Experimental Therapeutics, 324(2), 876–882.
Wang, Y. F., Mainali, P., Tang, C. S., et al. (2008). Effects of nitric oxide and hydrogen sulfide on the relaxation of pulmonary arteries in rats. Chinese Medical Journal (English), 121(5), 420–423.
Dombkowski, R. A., Russell, M. J., & Olson, K. R. (2004). Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 286(4), R678–R685.
Bian, J. S., Yong, Q. C., Pan, T. T., et al. (2006). Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. The Journal of Pharmacology and Experimental Therapeutics, 316(2), 670–678.
Pan, T. T., Feng, Z. N., Lee, S. W., Moore, P. K., & Bian, J. S. (2006). Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 40(1), 119–130.
Sivarajah, A., McDonald, M. C., & Thiemermann, C. (2006). The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock, 26(2), 154–161.
Yong, Q. C., Lee, S. W., Foo, C. S., et al. (2008). Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. American Journal of Physiology. Heart and Circulatory Physiology, 295(3), H1330–H1340.
Hu, Y., Chen, X., Pan, T. T., et al. (2008). Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Archiv, 455(4), 607–616.
Calvert, J. W., Jha, S., Gundewar, S., et al. (2009). Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circulation Research, 105(4), 365–374.
Zhang, H., Zhi, L., Moochhala, S. M., Moore, P. K., & Bhatia, M. (2007). Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis. Journal of Leukocyte Biology, 82(4), 894–905.
Sodha, N. R., Clements, R. T., Feng, J., et al. (2009). Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. The Journal of Thoracic and Cardiovascular Surgery, 138(4), 977–984.
Oh, G. S., Pae, H. O., Lee, B. S., et al. (2006). Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappa B via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radical Biology & Medicine, 41(1), 106–119.
Kimura, Y., Goto, Y., & Kimura, H. (2010). Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxidants Redox Signaling, 12(1), 1–13.
Pryor, W. A., Houk, K. N., Foote, C. S., et al. (2006). Free radical biology and medicine: It's a gas, man! American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 291(3), R491–R511.
Yan, H., Du, J., & Tang, C. (2004). The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochemical and Biophysical Research Communications, 313(1), 22–27.
Chen, Y. H., Yao, W. Z., Geng, B., et al. (2005). Endogenous hydrogen sulfide in patients with COPD. Chest, 128(5), 3205–3211.
Jiang, H. L., Wu, H. C., Li, Z. L., Geng, B., & Tang, C. S. (2005). Changes of the new gaseous transmitter H2S in patients with coronary heart disease. Di Yi Jun Yi Da Xue Xue Bao, 25(8), 951–954.
Shi, Y. X., Chen, Y., Zhu, Y. Z., et al. (2007). Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. American Journal of Physiology. Heart and Circulatory Physiology, 293(4), H2093–H2100.
Sivarajah, A., Collino, M., Yasin, M., et al. (2009). Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock, 31(3), 267–274.
Zhu, Y. Z., Wang, Z. J., Ho, P., et al. (2007). Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. Journal of Applied Physiology, 102(1), 261–268.
Mishra, P. K., Tyagi, N., Sen, U., Givvimani, S., & Tyagi, S. C. (2010). H2S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 298(2), H451–H456.
Minamishima, S., Bougaki, M., Sips, P. Y., et al. (2009). Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation, 120(10), 888–896.
Osipov, R. M., Robich, M. P., Feng, J., et al. (2009). Effect of hydrogen sulfide in a porcine model of myocardial ischemia–reperfusion: Comparison of different administration regimens and characterization of the cellular mechanisms of protection. Journal of Cardiovascular Pharmacology, 54(4), 287–297.
Osipov, R. M., Robich, M., Feng, J., et al. (2010). Effect of hydrogen sulfide on myocardial protection in the setting of cardioplegia and cardiopulmonary bypass. Interactive CardioVascular Thoracic Surgery, 10(4), 506–512. doi: 10.1510/icvts.2009.219535 .
Sparatore, A., Perrino, E., Tazzari, V., et al. (2009). Pharmacological profile of a novel H(2)S-releasing aspirin. Free Radical Biology & Medicine, 46(5), 586–592.
Wallace, J. L., Caliendo, G., Santagada, V., & Cirino, G. (2010). Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). British Journal of Pharmacology, 159(6), 1236–1246.
Wang, Y., Zhao, X., Jin, H., et al. (2009). Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(2), 173–179.
Meng, Q. H., Yang, G., Yang, W., et al. (2007). Protective effect of hydrogen sulfide on balloon injury-induced neointima hyperplasia in rat carotid arteries. The American Journal of Pathology, 170(4), 1406–1414.
Esechie, A., Enkhbaatar, P., Traber, D. L., et al. (2009). Beneficial effect of a hydrogen sulphide donor (sodium sulphide) in an ovine model of burn- and smoke-induced acute lung injury. British Journal of Pharmacology, 158(6), 1442–1453.
Whiteman, M., Gooding, K. M., Whatmore, J. L., et al. (2010). Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia. doi: 10.1007/s00125-010-1761-5
Wu, L., Yang, W., Jia, X., et al. (2008). Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Laboratory Investigation, 89(1), 59–67.
Srilatha, B., Adaikan, P. G., Li, L., & Moore, P. K. (2007). Hydrogen sulphide: A novel endogenous gasotransmitter facilitates erectile function. The Journal of Sexual Medicine, 4(5), 1304–1311.
d'Emmanuele de Villa Bianca, R., Sorrentino, R., Maffia, P., et al. (2009). Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4513–4518.
Shukla, N., Rossoni, G., Hotston, M., et al. (2009). Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU International, 103(11), 1522–1529.
Srilatha, B., Adaikan, P. G., & Moore, P. K. (2006). Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction—A pilot study. European Journal of Pharmacology, 535(1–3), 280–282.
Zhuo, Y., Chen, P. F., Zhang, A. Z., et al. (2009). Cardioprotective effect of hydrogen sulfide in ischemic reperfusion experimental rats and its influence on expression of survivin gene. Biological & Pharmaceutical Bulletin, 32(8), 1406–1410.
Bliksoen, M., Kaljusto, M. L., Vaage, J., & Stenslokken, K. O. (2008). Effects of hydrogen sulphide on ischaemia–reperfusion injury and ischaemic preconditioning in the isolated, perfused rat heart. European Journal of Cardiothoracic Surgery, 34(2), 344–349.
Jha, S., Calvert, J. W., Duranski, M. R., Ramachandran, A., & Lefer, D. J. (2008). Hydrogen sulfide attenuates hepatic ischemia–reperfusion injury: Role of antioxidant and antiapoptotic signaling. American Journal of Physiology. Heart and Circulatory Physiology, 295(2), H801–H806.
Kang, K., Zhao, M., Jiang, H., et al. (2009). Role of hydrogen sulfide in hepatic ischemia–reperfusion-induced injury in rats. Liver Transplantation, 15(10), 1306–1314.
Bos, E. M., Leuvenink, H. G., Snijder, P. M., et al. (2009). Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury. Journal of the American Society of Nephrology, 20(9), 1901–1905.
Xu, Z., Prathapasinghe, G., Wu, N., et al. (2009). Ischemia–reperfusion reduces cystathionine-beta-synthase-mediated hydrogen sulfide generation in the kidney. American Journal of Physiology. Renal Physiology, 297(1), F27–F35.
Hosgood, S. A., & Nicholson, M. L. (2010). Hydrogen sulphide ameliorates ischaemia–reperfusion injury in an experimental model of non-heart-beating donor kidney transplantation. The British Journal of Surgery, 97(2), 202–209.
Qu, K., Chen, C. P., Halliwell, B., Moore, P. K., & Wong, P. T. (2006). Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke, 37(3), 889–893.
Calvert, J. W., Gundewar, S., Jha, S., Elrod, J. W., & Lefer, D. J. (2008). Hydrogen sulfide therapy attenuates left ventricular dysfunction and reduces mortality in a murine model of heart failure. Circulation, 118(18, Suppl. 2), S441.
Cai, W. J., Wang, M. J., Moore, P. K., et al. (2007). The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovascular Research, 76(1), 29–40.
Papapetropoulos, A., Pyriochou, A., Altaany, Z., et al. (2009). Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21972–21977.
Wang, M. J., Cai, W. J., Li, N., et al. (2010). The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxidants Redox Signaling, 12(9), 1065–1077.
McCarthy, P. J., Pattillo, C. B., Hood, J. L., Lefer, D. J., & Kevil, C. G. (2008). Hydrogen sulfide increases blood flow in a model of peripheral artery disease. Free Radical Biology & Medicine, 45(Suppl. 1), S88.
Beauchamp, R. O., Bus, J. S., Popp, J. S., Boreiko, C. J., & Andjelkovich, D. A. (1984). A critical review of the literature on hydrogen sulfide toxicity. CRC Critical Reviews in Toxicology, 13, 25–97.
Chen, K. Y., & Morris, J. C. (1972). Kinetics of oxidation of aqueous sulfide by oxygen. Environmental Science & Technology, 6(6), 529–537.
Bagarinao, T. (1992). Sulfide as an environmental factor and toxicant: Tolerance and adaptations in aquatic organisms. Aquatic Toxicology, 24, 21–62.
Cline, J. D. (1969). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 14, 454–458.
Julian, D., Dallia, W. E., & Arp, A. J. (1998). Neuromuscular sensitivity to hydrogen sulfide in the marine invertebrate Urechis caupo. The Journal of Experimental Biology, 201, 1393–1403.
Dorman, D. C., Moulin, F. J.-M., McManus, B. E., et al. (2002). Cytochrome oxidation inhibition induced by acute hydrogen sulfide inhalation: Correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicological Sciences, 65, 18–25.
Koenitzer, J. R., Isbell, T. S., Patel, H. D., et al. (2007). Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. American Journal of Physiology. Heart and Circulatory Physiology, 292(4), H1953–H1960.
Li, L., Whiteman, M., Guan, Y. Y., et al. (2008). Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): New insights into the biology of hydrogen sulfide. Circulation, 117(18), 2351–2360.
Li, L., Salto-Tellez, M., Tan, C. H., Whiteman, M., & Moore, P. K. (2009). GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radical Biology & Medicine, 47(1), 103–113.
Fiorucci, S., Orlandi, S., Mencarelli, A., et al. (2007). Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. British Journal of Pharmacology, 150(8), 996–1002.
Distrutti, E., Sediari, L., Mencarelli, A., et al. (2006). 5-Amino-2-hydroxybenzoic acid 4-(5-thioxo-5H-[1, 2]dithiol-3yl)-phenyl ester (ATB-429), a hydrogen sulfide-releasing derivative of mesalamine, exerts antinociceptive effects in a model of postinflammatory hypersensitivity. The Journal of Pharmacology and Experimental Therapeutics, 319(1), 447–458.
Li, L., Rossoni, G., Sparatore, A., et al. (2007). Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radical Biology & Medicine, 42(5), 706–719.
Muzaffar, S., Jeremy, J. Y., Sparatore, A., et al. (2008). H2S-donating sildenafil (ACS6) inhibits superoxide formation and gp91phox expression in arterial endothelial cells: Role of protein kinases A and G. British Journal of Pharmacology, 155(7), 984–994.
Perrino, E., Cappelletti, G., Tazzari, V., et al. (2009). New sulfurated derivatives of valproic acid with enhanced histone deacetylase inhibitory activity. Bioorganic & Medicinal Chemistry Letters, 18(6), 1893–1897.
Sidhapuriwala, J., Li, L., Sparatore, A., Bhatia, M., & Moore, P. K. (2007). Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat. European Journal of Pharmacology, 569(1–2), 149–154.
Bhatia, M., Sidhapuriwala, J. N., Sparatore, A., & Moore, P. K. (2008). Treatment with H2S-releasing diclofenac protects mice against acute pancreatitis-associated lung injury. Shock, 29(1), 84–88.
Baskar, R., Sparatore, A., Del Soldato, P., & Moore, P. K. (2008). Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. European Journal of Pharmacology, 594(1–3), 1–8.
Isenberg, J. S., Jia, Y., Field, L., et al. (2007). Modulation of angiogenesis by dithiolethione-modified NSAIDs and valproic acid. British Journal of Pharmacology, 151(1), 63–72.
Rossoni, G., Sparatore, A., Tazzari, V., et al. (2008). The hydrogen sulphide-releasing derivative of diclofenac protects against ischaemia–reperfusion injury in the isolated rabbit heart. British Journal of Pharmacology, 153(1), 100–109.
Fisher, C. D., Augustine, L. M., Maher, J. M., et al. (2007). Induction of drug-metabolizing enzymes by garlic and allyl sulfide compounds via activation of constitutive androstane receptor and nuclear factor E2-related factor 2. Drug Metabolism and Disposition, 35(6), 995–1000.
Benavides, G. A., Squadrito, G. L., Mills, R. W., et al. (2007). Hydrogen sulfide mediates the vasoactivity of garlic. Proceedings of the National Academy of Sciences of the United States of America, 104(46), 17977–17982.
Chuah, S. C., Moore, P. K., & Zhu, Y. Z. (2007). S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. American Journal of Physiology. Heart and Circulatory Physiology, 293(5), H2693–H2701.
Lawson, L. D., & Wang, Z. J. (2005). Allicin and allicin-derived garlic compounds increase breath acetone through allyl methyl sulfide: Use in measuring allicin bioavailability. Journal of Agricultural and Food Chemistry, 53(6), 1974–1983.
Predmore, B. L., Grinsfelder, D. B., Aragon, J. P., et al. (2010). The stable hydrogen sulfide donor, diallyl trisulfide, protects against acute myocardial infarction in mice. Journal of the American College of Cardiology, 55(10_MeetingAbstracts), A116.E1089.
Ji, Y., Pang, Q. F., Xu, G., et al. (2008). Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia–reperfusion injury. European Journal of Pharmacology, 587(1–3), 1–7.