Development of Edible Films and Coatings with Antimicrobial Activity

Springer Science and Business Media LLC - Tập 4 Số 6 - Trang 849-875 - 2011
Carmen A. Campos1, Lía N. Gerschenson1, Silvia K. Flores1
1Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT Food Science and Technology, 43, 837–842.

Anker, M., Berntsen, J., Hermansson, A. M., & Stading, M. (2001). Improved water vapour barrier of whey protein films by addition of an acetylated monoglyceride. Innovative Food Science & Emerging Technologies, 3, 81–92.

Araya, L., Clavijo, R., & Herrera, C. (2006). Capacidad antioxidante de frutas y verduras cultivados en Chile. Archivos Latinoamericanos de Nutrición, 56(4), 361–365.

Artharn, A., Prodpran, T., & Benjakul, S. (2009). Round scad protein-based film: storage stability and its effectiveness for shelf-life extension of dried fish powder. LWT Food Science and Technology, 42(7), 1238–1244.

Arvanitoyannis, I. S. (2008). The use of chitin and chitosan for food packaging applications. In E. Chiellini (Ed.), “Environmentally compatible food packaging” (pp. 137–158). Cambridge: CRC-Woodhead Publishing.

Arvanitoyannis, I., Nakayama, A., & Aiba, S. (1998). Chitosan and gelatin based edible films: State diagrams, mechanical and permeation properties. Carbohydrate Polymers, 37, 371–382.

Averous, L., Fringant, C., & Moro, L. (2001). Starch base biodegradable materials suitable for thermoforming packaging. Polymer, 42, 6565–6572.

Aydinli, M., Tutas, M., & Bozdemir, Ö. A. (2004). Mechanical and light transmittance properties of locust bean gum based edible films. Turkish Journal of Chemistry, 28, 163–171.

Ayranci, E., & Tunc, S. (2003). A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chemistry, 80, 423–431.

Bagamboula, C. F., Uyttendaele, M., & Debevere, J. (2004). Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiology, 21, 33–42.

Belalia, R., Grelier, S., Benaissa, M., & Coma, V. (2008). New bioactive biomaterials based on quaternized chitosan. Journal of Agricultural and Food Chemistry, 56(5), 1582–1588.

Beverlya, R. L., Janesa, M. E., Prinyawiwatkulaa, W., & Nob, H. K. (2008). Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes. Food Microbiology, 25, 534–537.

Bico, S. L. S., Raposo, M. F. J., Morais, R. M. S. C., & Morais, A. M. M. B. (2009). Combined effects of chemical dip and/or carrageenan coating and/or controlled atmosphere on quality of fresh-cut banana. Food Control, 20, 508–514.

Bifani, V., Ramírez, C., Ihl, M., Rubilar, M., García, A., & Zaritzky, N. (2007). Effects of murta (Ugni molinae Turcz) extract on gas and water vapor permeability of carboxymethylcellulose-based edible films. LWT Food Science and Technology, 40(8), 1473–1481.

Bourtoom, T. (2008). Edible films and coatings: Characteristics and properties. International Food Research Journal, 15(3), 237–248.

Bourtoom, T. (2009). Review article. Edible protein films: Properties enhancement. International Food Research Journal, 16, 1–9.

Brindle, L. P., & Krochta, J. M. (2008). Physical properties of whey protein—hydroxypropyl methylcellulose blend edible films. Journal of Food Science, 73(9), E446–E454.

Buonocore, G. G., Del Nobile, M., Panizza, A., Battaglia, G., & Nicolais, L. (2003). Modeling the lysozime release kinetics from antimicrobial films intended for food packaging applications. Journal of Food Science, 68(4), 1365–1370.

Buonocore, G. G., Conte, A., & Del Nobile, M. A. (2005). Use of a mathematical model to describe the barrier properties of edible films. Journal of Food Science, 70(2), 142–147.

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94(3), 223–253.

Cagri, A., Ustunol, Z., & Ryser, E. T. (2001). Antimicrobial, mechanical, and moisture barrier properties of low pH whey protein-based edible films containing p-amino benzoic or sorbic acids. Journal of Food Science, 66(6), 865–870.

Carulo M. F. & Kieckbusch T. G. (2005). Water vapor permeability in biodegradable calcium Alginate films: effect of lipid addition. In: proceedings of the 2nd mercosur congress on chemical engineering and 4th mercosur congress on process systems engineering, 14-18August 2005, Rio de Janeiro, Brazil. Available: http://www.enpromer2005.eq.ufrj.br/nukleo/pdfs/0266_enpromer_final.pdf .

Carvalho, A., Zambón, M., Curvelo, A., & Gandini, A. (2003). Size exclusion chromatography characterization of thermoplastic starch composites. Influence of plasticizer and fiber content. Polymer Degradation and Stability, 79, 133–138.

Cerqueira, M. A., Lima, A. M., WS, S. B., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009). Functional polysaccharides as edible coatings for cheese. Journal of Agricultural and Food Chemistry, 57, 1456–1462.

Cerqueira, M. A., Souza-Gallagher, M. J., Macedo, I., Rodriguez Aguilera, R., WS, S. B., Teixeira, J. A., et al. (2010). Use of galactomannan edible coating application and storage temperature for prolonging shelf-life of regional cheese. Journal of Food Engineering, 97, 87–94.

Cha, D. S., Cooksey, K., Chiman, M. S., & Park, H. J. (2003). Release of nisin from various heat-pressed and cast films. LWT Food Science and Technology, 36, 209–213.

Chang, Y., Cheah, P., & Seow, C. (2000). Plasticizing-antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. Journal of Food Science, 65(3), 445–451.

Chang, P. R., Jian, R., Yu, J., & Maa, X. (2010). Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers, 80, 420–425.

Chen, M. C., Yeh, G. H. C., & Chiang, B. H. (1996). Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. Journal of Food Processing and Preservation, 20, 379–390.

Chien, P.-J., Fuu, S., & Yang, F.-I. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering, 78(1), 225–229.

Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88, 159–168.

Chiu P-E & Lai L-S. (2010). Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork slices. International Journal of Food Microbiology, 139, 23–30.

Cho, S. Y., Park, J.-W., & Rhee, C. (2002). Properties of laminated films from whey powder and sodium caseinate mixtures and zein layers. Lebensmittel-Wissenschaft und Technologie, 35, 135–139.

Chung, D., Papadakis, S. E., & Yam, K. L. (2001). Release of propyl paraben from a polymer coating into water and food simulating solvents for antimicrobial packaging applications. Journal of Food Processing and Preservation, 25, 71–87.

Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78, 90–103.

Coma, V., Sebti, I., Pardon, P., Deschamps, A., & Pichavant, F. H. (2001). Antimicrobial edible packaging based on cellulosic ethers, fatty acids, and nisin incorporation to inhibit Listeria innocua and Sthaphylococcus aureus. Journal of Food Protection, 64(4), 70.

Coma, V., Deschamps, A., & Martial-Gros, A. (2003). Bioactive packaging materials from edible chitosan polymer-antimicrobial assessment on dairy related contaminants. Journal of Food Science, 68(9), 2788–2792.

Coma, V., Sebti, I., Pardon, P., Pichavant, F. H., & Deschamps, A. (2003). Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid. Carbohydrate Polymers, 51(3), 265–271.

Curvelo, A., Carvalho, A., & Agnelli, J. (2001). Thermoplastic starch-cellulosic fibers composites: Preliminary results. Carbohydrate Polymers, 45, 183–188.

Datta, S., Janes, M. E., Xue, Q. G., & La Peyre, J. F. (2008). Control of Listeria monocytogenes and Salmonella annatum on the surface of smoked salmon coated with calcium alginate coating containing oyster lysozyme and nisin. Journal of Food Science, 73(2), M67–M71.

de Azeredo HMC. (2009). Nanocomposites for food packaging applications. Food Research International, 42, 1240–1253.

de Moura, M. R., Aouada, F. A., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso, L. H. C. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448–453.

Debeaufort, F., Quezada, J., Gallo, A., Delporte, B., & Voilley, A. (2000). Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. Journal of Membrane Science, 180, 47–55.

Phan The, D., Debeaufort, F., Peäroval, C., Despreä, D., Courthaudon, J. L., & Voil, A. (2002). Arabinoxylan-lipid-based edible films and coatings. 3. Influence of drying temperature on film structure and functional properties. Journal of Agriculture and Food Chemistry, 50, 2423–2428.

Delves-Broughton, J. (2005). Nisin as a food preservative. Food Australia, 57, 525–527.

Delville, J., Joly, C., Dole, P., & Biliard, C. (2003). Influence of photocrosslinking on the retrogradation of wheat starch based films. Carbohydrate Polymers, 53, 373–381.

Demirgöz, D., Elvira, C., Mano, J., Cunha, A. M., Piskin, E., & Reis, R. L. (2000). Chemical modification of starch based biodegradable polymeric blends: Effects on water uptake, degradation behaviour and mechanical properties. Polymer Degradation and Stability, 70, 161–170.

Devlieghere, F., Vermeiren, L., & Debevere, J. (2004). New preservation technologies: Possibilities and limitations. International Dairy Journal, 14, 273–285.

Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88, 308–316.

Du, W.-X., Olsen, C. W., Avena-Bustillos, R. J., Mchugh, T. H., Levin, C. E., & Friedman, M. (2008a). Storage stability and antibacterial activity against Escherichia coli O157:H7 of carvacrol in edible apple films made by two different casting methods. Journal of Agricultural and Food Chemistry, 56, 3082–3088.

Du, W.-X., Olsen, C. W., Avena-Bustillos, R. J., Mchugh, T. H., Levin, C. E., & Friedman, M. (2008b). Antibacterial activity against E. coli O157:H7, physical properties, and storage stability of novel carvacrol-containing edible tomato films. Journal of Food Science, 73(7), M378–M383.

Durango, A. M., Soares, N. F. F., & Andrade, N. J. (2006). Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control, 17, 336–341.

Eswaranandam, S., Hettiarachhy, N. S., & Johnson, M. G. (2004). Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin incorporated soy protein film against Listeria monocytogenes, Eschericchia coli O157:H7, and Salmonella gaminara. Journal of Food Science, 69(3), FMS79–84.

Fabec B., Hellstrom T., Henrysdotter G., Hjulmand-Lassen M., Nilsson J., Rüdinger L., Sipiläinen-Malm T., Solli E., Svensson K., Thorkelsson A. & Tuomala V. (2000). Active and intelligent food Packaging. A Nordic report on the legislative aspects. Nordic co-operation, pp 21-22. Available at: www.norden.org/pub/ebook/2000-584.pdf

Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. N. (2005). Mechanical properties of tapioca-starch edible films containing sorbates. LWT Food Science and Technology, 38, 631–639.

Famá, L., Flores, S. K., Gerschenson, L., & Goyanes, S. (2006). Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydrate Polymers, 66(1), 8–15.

Famá, L., Bittante, M. B. Q., Sobral, P. J. A., Goyanes, S., & Gerschenson, L. N. (2010). Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites. Materials Science and Engineering C, 30(6), 853–859.

Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y., & Chi, Y. (2009). Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chemistry, 115, 66–70.

Fernández Cervera, M., Karjalainen, M., Airaksinen, S., Rantanen, J., Krogars, K., Heinämäki, J., et al. (2004). Physical stability and moisture sorption of aqueous chitosan–amylose starch films plasticized with polyols. European Journal of Pharmaceutics and Biopharmaceutics, 58, 69–76.

Fernandez-Saiz, P., Lagaron, J. M., & Ocio, M. J. (2009). Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocolloids, 23, 913–921.

Ferreira, C. O., Nunes, C. A., Delgadillo, I., & Lopes-da-Silva, J. A. (2009). Characterization of chitosan-whey protein films at acid pH. Food Research International, 42(7), 807–813.

Flores, S., Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. N. (2007a). Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate. Food Research International, 40, 257–265.

Flores, S., Haedo, A., Campos, C., & Gerschenson, L. N. (2007b). Antimicrobial performance of potassium sorbate supported in tapioca starch edible films. European Food Research &Technolology, 225(3–4), 375–384.

Flores, S. K., Costa, D., Yamashita, F., Gerschenson, L. N., & Grossmann, M. V. (2010). Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Materials Science and Engineering C, 30, 196–202.

Franssen, L. R., & Krochta, J. M. (2003). Edible Coatings containing natural antimicrobials for processed foods. In S. Roller (Ed.), Naturals antimicrobials for the minimal processing of foods, Chapter 12. Boca Ratón: CRC Press.

Franssen L. R., Rumsey T. R. & Krochta J. M. (2002). Modeling of natamycin and potassium sorbate diffusion in whey protein isolate films for application to cheddar cheese. In: Institute of food technologists annual meeting, 15–19 June 2002, Anaheim, California, USA. Poster 28-5.

Garcia, M., Bifani, V., Campos, C. A., Martino, M. N., Sobral, P., Flores, S. K., et al. (2008). Edible coating as an oil barrier or active system. In Gutiérrez Lopez, Barbosa-Cánovas, Welti-Chanes, & Parada Arias (Eds.), Food Engineering: Integrated Approaches (pp. 225–241). New York: Springer.

García, M., Martino, M., & Zaritizky, N. (2000). Lipid addition to improve barrier properties of edible starch-based films and coatings. Journal of Food Science, 65(6), 941–947.

Gerschenson, L. N., Campos, C. A., Barbosa, Cánovas, & Welti, Chanes. (1995). Sorbic acid stability during processing and storage of high moisture foods. In Food preservation by moisture control. Fundamentals and applications (pp. 761–90). Lancaster: Technomic Publishing Co.

Giancone T. (2006). Hydrocolloids based edible films: Composition–structure–properties relationships. Doctoral Thesis Univeristá Degli study Di Napoli.

Giancone T., Torrieri E., Di Pierro P., Cavella S., Giosafatto C. V. L. & Masi P. (2009). Effect of surface density on the engineering properties of high methoxyl pectin-based edible films. Food and Bioprocess Technology, doi: 10.1007/s11947-009-0208-9 , in press.

Giannakopoulos, A., & Guilbert, S. (1986). Determination of sorbic acid diffusivity in model food gels. Journal of Food Technology, 21, 339–353.

Gomez-Estaca, J., Montero, P., Giménez, B., & Gómez-Guillén, M. C. (2007). Effect of functional edible films and high pressure processing on microbial growth and oxidative spoilage in cold-smoke sardine (Sardina pilchardus). Food Chemistry, 105, 511–520.

Gómez-Estaca, J., Montero, P., Fernández-Martín, F., Alemán, A., & Gómez-Guillén, M. C. (2009). Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocolloids, 23, 1334–1341.

Guiga, W., Swesi, Y., Galland, S., Peyrol, E., Degraeve, P., & Sebti, I. (2010). Innovative multilayer antimicrobial films made with Nisaplin® or nisin and cellulosic ethers: Physico-chemical characterization, bioactivity and nisin desorption kinetics. Innovative Food Science & Emerging Technologies, 11, 352–360.

Han, C., Zhao, Y., Leonard, S. W., & Traber, M. G. (2004). Edible coating to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria x Ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33, 67–78.

Han, C., Lederer, C., Mcdaniel, M., & Zhao, Y. (2005). Sensory evaluation of fresh strawberries (Fragaria ananassa) coated with chitosan-based edible coatings. Journal of Food Science, 70(3), S172–S178.

Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22(4), 273–292.

Hosseini, M. H., Razavi, S. H., & Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation, 33, 727–743.

Imran, M., El-Fahmy, S., Revol-Junelles, A.-M., & Desobry, S. (2010). Cellulose derivative based active coatings: Effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydrate Polymers, 81, 219–225.

Jeon, Y. J., Kamil, J. Y. V. A., & Shahidi, F. (2002). Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. Journal of Agricultural and Food Chemistry, 50, 5167–5178.

Karbowiak, T., Debeaufort, F., & Voilley, A. (2007). Influence of thermal process on structure and functional properties of emulsion-based edible films. Food Hydrocolloids, 21(5–6), 879–888.

Karbowiak, T., Debeaufort, D., Voilley, A., & Trystram, G. (2010). From macroscopic to molecular scale investigations of mass transfer of small molecules through edible packaging applied at interfaces of multiphase food products. Innovative Food Science & Emerging Technologies, 11, 352–360.

Kechichian Ditchfield, C., Veiga-Santos, P., & Tadini, C. C. (2010). Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch. LWT Food Science and Technology, 43, 1088–1094.

Kim, C. T., Kim, C. J., Cho, Y. J., Chun, B. Y., Lee, S. J., Cha, J. Y., et al. (2005). Preparation of starch and cellulose-based edible films incorporated with propolis extract and their physical and antimicrobial properties. Food Engineering Progress, 9(1), 1–7.

Ko, S., Janes, M. E., Hettiarachchy, N. S., & Johnson, M. G. (2001). Physical and chemical properties of edible films containing nisin and their action against Listeria monocytogenes. Journal of Food Science, 66(7), 1006–1011.

Kristo, E., & Biliaderis, C. G. (2006). Water sorption and thermo-mechanical properties of water/sorbitol-plasticized composite biopolymer films: Caseinate–pullulan bilayers and blends. Food Hydrocolloids, 20, 1057–1071.

Kristo, E., Biliaderis, C. G., & Zampraka, A. (2007). Water vapor barrier and tensile properties of composite caseinate–pullulan films: Biopolymer composition effects and impact of beeswax lamination. Food Chemistry, 101, 753–764.

Kristo, E., Koutsoumanis, K. P., & Biliaderis, C. G. (2008). Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloids, 22, 373–386.

Ku, K. J., Hong, Y. H., & Song, K. B. (2008). Mechanical properties of a Gelidium corneum edible film containing catechi and its application in sausages. Journal of Food Science, 73(3), C217–221.

Kyoungju, K., & Song, K. B. (2007). Physical properties of nisin-incorporated gelatin and corn zein films and antimicrobial activity against Listeria monocytogenes. Journal of Microbiology and Biotechnology, 17(3), 520–523.

Lafargue, D., Lourdin, D., & Doublier, J.-L. (2007). Film-forming properties of a modified starch/j-carrageenan mixture in relation to its rheological behavior. Carbohydrate Polymers, 70, 101–111.

Le Tien, C., Letendre, M., Ispas-Szabo, P., Mateescu, M. A., Delmas-Petterson, G., Yu, H.-L., et al. (2000). Development of biodegradable films from whey proteins by crosslinking and entrapment in cellulose. Journal of Agricultural and Food Chemistry, 48, 5566–5575.

Lee, J. Y., Park, H. J., Lee, C. Y., & Choi, W. Y. (2003). Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. Lebensmittel-Wissenschaft und Technologie, 36(3), 323–329.

Li, B., Kennedy, J. F., Peng, J. L., Yie, X., & Xie, B. J. (2006). Preparation and performance evaluation of glucomannan–chitosan–nisin ternary antimicrobial blend film. Carbohydrate Polymers, 65, 488–494.

Lim, G.-O., Jang, S.-A., Song, K.-B. (2010) Physical and antimicrobial properties of Gelidium corneum/nano-clay composite film containing grapefruit seed extract or thymol. Journal of Food Engineering, 98(4), 415–420.

Lin, D., & Zhao, Y. (2007). Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60–75.

Liolios, C. C., Gortzi, O., Lalas, S., Tsaknis, J., & Chinou, I. (2009). Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chemistry, 112, 77–83.

Liu, L., LiuCK, F. M. L., & Hicks, K. B. (2007). Composite films from pectin and fish skin gelatin or soybean flour protein. Journal of Agricultural and Food Chemistry, 55, 2349–2355.

Lozina, L., Boehringer, S., D’Aquino, M., & Acosta, O. (2006). Eficacia del Propóleos sobre Malassezia pachydermatis. Correlación de distintas Técnicas in Vitro. Acta Farmaceutica Bonaerense, 25(4), 560–563.

Maftoonazad N., Ramaswamy H. S. & Marcotte M. (2007a). Moisture sorption Behavior, and effect of moisture content and sorbitol on thermo-mechanical and barrier properties of pectin based edible films. International Journal of Food Engineering, 3(4), Article 10. Available at: http://www.bepress.com/ijfe/vol3/iss4/art10

Maftoonazad, N., Ramaswamy, H. S., Moalemiyan, M., & Kushalappa, A. C. (2007). Effect of pectin-based edible emulsion coating on changes in quality of avocado exposed to Lasiodiplodia theobromae infection. Carbohydrate Polymers, 68, 341–349.

Maizura, M., Fazilah, A., Norziah, M. H., & Karim, A. A. (2007). Antibacterial activity and mechanical properties of partially hydrolyzed sago starch–alginate edible film containing lemongrass oil. Journal of Food Science, 72(6), C324–C330.

Marques, P. T., Lima, A. M. F., Bianco, G., Laurindo, J. B., Borsali, R., Le Meins, J.-F., et al. (2006). Thermal properties and stability of cassava starch films crosslinked with tetraethylene glycol diacrylate. Polymer Degradation and Stability, 91(4), 726–732.

Martins, J. T., Cerqueira, M., Souza, B. S., Avides, M., & Vicente, A. A. (2010). Shelf life extension of ricotta cheese using coatings of galactomannans from nonconventional sources incorporating nisin against Listeria monocytogenes. Journal of Agricultural and Food Chemistry, 58, 1884–1891.

Marudova, M., Lang, S., Brownsey, G. J., & Ring, S. G. (2005). Pectin-chitosan multilayer formation. Carbohydrate Research, 340, 2144–2149.

Mastromatteo, M., Chillo, S., Buonocore, G. G., Massaro, A., Conte, A., & Del Nobile, M. A. (2008). Effects of spelt and wheat bran on the performances of wheat gluten films. Journal of Food Engineering, 88, 202–212.

McHugh, T. H., & Krochta, J. M. (1994). Sorbitol vs glycerol-plasticized whey protein edible films: Integrated oxygen permeability and tensile property evaluation. Journal of Agricultural and Food Chemistry, 42(4), 841–845.

Mendes de Souza, P., Fernández, A., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2010). Modified sodium caseinate films as releasing carriers of lysozyme. Food Hydrocolloids, 24, 300–306.

Min, S., Harris, L., & Krochta, J. (2005a). Antimicrobial effects of lactoferrin, lysozyme, and the lactoperoxidase system and edible whey protein films incorporating the lactoperoxidase system against Salmonella enterica and Eschericchia coli O157:H7. Journal of Food Science, 70(7), M332–338.

Min, S., Harris, L., & Krochta, J. (2005b). Listeria monocytogenes inhibition by whey protein films and coatings incorporating the lactoperoxidase system. Journal of Food Science, 70(7), M317–324.

Min, S., Harris, L., & Krochta, J. (2005c). Inhibition of Penicillium commune by edible whey protein films incorporating lactoferrin, lactoferrin hydrolysate and the lactoperoxidase systems. Journal of Food Science, 70(2), M87–94.

Mitrakas, G. E., Koutsoumanis, K. P., & Lazarides, H. N. (2008). Impact of edible coating with or without anti-microbial agent on microbial growth during osmotic dehydration and refrigerated storage of a model plant material. Innovative Food Science & Emerging Technologies, 9, 550–555.

Moreira, M. R., Ponce, A. G., del Valle, C. E., & Roura, S. I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT Food Science and Technology, 38(5), 565–570.

Moreira, M. R., Ponce, A., Del Valle, C. E., & Roura, S. I. (2009). Edible coatings on fresh squash slices: Effect of film drying temperature on the nutritional and microbiological quality. Journal of Food Processing and Preservation, 33, 226–236.

Naidu, A. S. (2000). Lactoferrin, lactoperoxidase. In Naidu (Ed.), Natural food antimicrobial systems (pp. 17–132). New York: CRC Press.

No, H. K., Meyres, S. P., Prinyawiwatkull, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: A review. Journal of Food Science, 72, R87–R100.

Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120, 193–198.

Olivas, G. I., & Barbosa-Cánovas, G. V. (2008). Alginate–calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. Lebensmittel-Wissenschaft und Technologie, 41, 359–366.

Ouattara, B., Sabato, S. F., & Lacroix, M. (2001). Combined effect of antimicrobial coating and gamma irradiation on shelf life extension of pre-cooked shrimp (Penaeus spp.). International Journal of Food Microbiology, 68, 1–9.

Ozdemir, M., & Floros, J. D. (2008). Optimization of edible whey protein films containing preservatives for water vapor permeability, water solubility and sensory characteristics. Journal of Food Engineering, 86, 215–224.

Park, S. I., Daeschel, M. A., & ZhaoY. (2004). Functional properties of antimicrobial lysozyme-chitosan composite films. Journal of Food Science, 69(8), 215–221.

Parris, N., Coffin, D. R., Joubran, R. F., & Pessen, H. (1995). Composition factors affecting the water vapor permeability and tensile properties of hydrophilic films. Journal of Agricultural and Food Chemistry, 43, 1432–1435.

Pintado, C. M., Ferreira, M. A. S. S., & Sousa, I. (2009). Properties of whey protein-based films containing organic acids and nisin to control Listeria monocytogenes. Journal of Food Protection, 72(9), 1891–1896.

Ponce, A. G., Roura, S. I., del Valle, C. E., & Moreira, M. R. (2008). Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: In vitro and in vivo studies. Postharvest Biology and Technology, 49, 294–300.

Pranoto, Y., Rakshit, S. K., & Salokhe, V. M. (2005a). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Science and Technology, 38, 859–865.

Pranoto, Y., Salokhe, V. M., & Rakshit, S. K. (2005b). Physical and antibacterial properties of alginate-based edible film incorporated with garlic oil. Food Research International, 38, 267–272.

Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 42, 373–380.

Raybaudi-Massilia, R. M., Mosqueda-Melgar, J., & Martín-Belloso, O. (2008). Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. International Journal of Food Microbiology, 121, 313–327.

Restuccia D., Spizzirri U. G., Parisi1 O. I., Cirillo G., Curcio M., Iemma F., Puoci F., Vinci G. & Picci N. (2010). New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control. Accepted paper. Avalilable at: doi: 10.1016/j.foodcont.2010.04.028 .

Rhim, J.-W. (2004). Physical and mechanical properties of water resistant sodium alginate films. Lebensmittel-Wissenschaft und Technologie, 37, 323–330.

Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Tecnology, 44, 63–70.

Robson, M. G., Ferreira Soares, N. F., Alvarenga Botrel, D., & de Almeida, G. L. (2008). Characterization and effect of edible coatings on minimally processed garlic quality. Carbohydrate Polymers, 72(3), 403–409.

Roger, S., Talbot, D., & Bee, A. (2006). Preparation and effect of Ca2+ on water solubility, particle release and swelling properties of magnetic alginate films. Journal of Magnetism and Magnetic Materials, 305, 221–227.

Rojas-Graü, M. A., Avena-Bustillos, R. J., Olsen, C., Friedman, M., Henika, P. R., Martín-Belloso, O., et al. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of Food Engineering, 81, 634–641.

Rojas-Graü, M. A., Tapia, M. S., & Martín-Belloso, O. (2008). Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT Food Science and Technology, 41(1), 139–147.

Rojas-Graü, M. A., Soliva-Fortuny, R., & Martin-Belloso, O. (2009). Edible coatings to incorporate active ingredients to freshcut fruits: A review. Trends in Food Science and Technology, 20, 438–447.

Roller, S. (2003). Introduction. In Roller (Ed.), Natural antimicrobials for the minimal processing of foods (pp. 1–10). Boca Raton: CRC Press.

Samelis, J., & Sofos, J. N. (2003). Organic acids. In Roller (Ed.), Natural antimicrobials for the minimal processing of foods. Boca Raton: CRC Press.

Sanjurjo, K., Flores, S. K., Gerschenson, L. N., & Jagus, R. (2006). Study of the performance of nisin supported in edible films. Food Research International, 39, 749–754.

Sebti, I., Martial-Gros, A., Carnet-Pantiez, A., Grelier, S., & Coma, V. (2005). Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. Journal of Food Science, 70(2), 100–104.

Sebti, I., Chollet, E., Degraeve, P., Noel, C., & Peyrol, E. (2007). Water sensitivity, antimicrobial, and physicochemical analyses of edible films based on HPMC and/or chitosan. Journal of Agricultural and Food Chemistry, 55, 693–699.

Seifu, E., Buys, E. M., & Donkin, E. F. (2005). Significance of the lactoperoxidase system in the dairy industry and its potential applications: A review. Trends in Food Science and Technology, 16, 1–18.

Seol, K.-H., Lim, D.-G., Jang, A., Jo, C., & Lee, M. (2009). Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5°C. Meat Science, 83, 479–483.

Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39, 639–644.

Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24, 285–290.

Simões, A. D. N., Tudela, J. A., Allende, A., Puschmann, R., & Gil, M. I. (2009). Edible coatings containing chitosan and moderate modified atmospheres maintain quality and enhance phytochemicals of carrot sticks. Postharvest Biology and Technology, 51, 364–370.

Sivarooban, T., Hettiarachchy, N. S., & Johnson, M. G. (2008). Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Research International, 41, 781–785.

Soares, R. M. D., Lima, A. M. F., Oliveira, R. V. B., Pires, A. T. N., & Soldi, V. (2005). Thermal degradation of biodegradable edible films based on xanthan and starches from different sources. Polymer Degradation and Stability, 90(3), 449–454.

Sofos, J. N. (2000). Sorbic acid. In Naidu (Ed.), Natural Food Antimicrobial Systems, Chapter 23. Boca Raton: CRC Press.

Sousa, F., Guebitz, G. M., & Kokol, V. (2009). Antimicrobial and antioxidant properties of chitosan enzymatically functionalized with flavonoids. Process Biochemistry, 44, 749–756.

Tapia, M. S., Rojas-Graü, M. A., Rodríguez, F. J., Ramírez, J., Carmona, A., & Martin-Belloso, O. (2007). Alginate- and gellan-based edible films for probiotic coatings on fresh-cut fruits. Journal of Food Science, 72(4), E190–E196.

Teixeira V. (2007). Advanced nanotechnology thin film approaches for the food and medical industry: An overview of currect status. Available at: www.nanohub.org/resource/2257 . Accessed 18 December 2008.

Theivendran, S., Hettiarachchy, N. S., & Johnson, M. G. (2006). Inhibition of Listeria monocytogenes by nisin combined with grape seed extract or green tea extract in soy protein film coated on turkey frankfurters. Journal of Food Science, 71(2), M39–M44.

Thomas L. V., Ckarkson M. R. & Delves Broughton J. (2000). Nisin. In: Naidu (ed) Natural Food Antimicrobial Systems, Chapter 18. Boca Raton: CRC Press

Turhan, K. N., & Sahbaz, F. (2004). Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. Journal of Food Engineering, 61(3), 459–466.

Valencia-Chamorro, S. A., Pérez-Gago, M. B., Del Río, M. A., & Palou, L. (2009). Curative and preventive activity of hydroxypropyl methylcellulose-lipid edible composite coatings containing antifungal food additives to control citrus postharvest green and blue molds. Journal of Agricultural and Food Chemistry, 57, 2770–2777.

Valero, M., & Francés, E. (2006). Synergistic bactericidal effect of carvacrol, cinnamaldehyde or thymol and refrigeration to inhibit Bacillus cereus in carrot broth. Food Microbiology, 23, 68–73.

Vargas, M., Albors, A., Chiralt, A., & González-Maríınez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41, 164–171.

Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496–511.

Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23, 536–547.

Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762–769.

Veiga-Santos, P., Oliveirab, L. M., Ceredac, M. P., Alvesd, A. J., & Scamparini, A. R. P. (2005). Mechanical properties, hydrophilicity and water activity of starch-gum films: Effect of additives and deacetylated xanthan gum. Food Hydrocolloids, 19, 341–349.

Wambura P., Yang W. & Mwakatage N. R. (2008). Effects of sonication and edible coating containing rosemary and tea extracts on reduction of peanut lipid oxidative rancidity. Food and Bioprocess Technology, DOI: 10.1007/s11947-008-0150-2 , in press.

Weiss, J., Takhistov, P., & McClements, J. (2006). Functional materials in food nanotechnology. Journal of Food Science, 71(9), R107–116.

Xu, Y. X., Kimb, K. M., Hanna, M. A., & Nag, D. (2005). Chitosan–starch composite film: Preparation and characterization. Industrial Crops and Products, 21, 185–192.

Ye, M., Neetoo, H., & Chen, H. (2008). Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogenes on cold-smoked salmon. International Journal of Food Microbiology, 127, 235–240.

Yener, F. Y. G., Korel, F., & Yemenicioglu, A. (2009). Antimicrobial activity of lactoperoxidase system into crosslinked alginate films. Journal of Food Science, 74(2), M73–79.

Yildirim, M., Gulec, F., Bayram, M., & Yildirim, Z. (2006). Properties of kashar cheese coated with casein as carrier of natamycin. Italian Journal of Food Science, 18, 127–138.

Zactiti, E. M., & Kieckbusch, T. G. (2005). Potassium sorbate permeability in biodegradable alginate films: Effect of the antimicrobial agent concentration and crosslinking degree. Journal of Food Engineering, 77, 462–467.

Zhang, H., Kong, B., Xiong, Y. L., & Sun, X. (2009). Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4°C. Meat Science, 8, 686–692.

Zheng, Z. L., Tan, J. Y. W., Liu, H. Y., Zhou, X. H., Xiang, X., & Wang, K. Y. (2009). Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfish (Ictalurus punctatus). Aquaculture, 292(3–4), 214–218.

Zhong, Q.-P., & Xia, W.-S. (2008). Physicochemical properties of chitosan-based films. Food Technology and Biotechnology, 46(3), 262–269.

Ziani, K., Fernandez Pan, I., Royo, M., & Maté, J. (2009). Antifungal activity of films and solutions based on chitosan. Food Hydrocolloids, 23, 2309–2314.

Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2009). Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Science, 82, 338–345.

Zinoviadou, K., Koutsoumanis, K. P., & Biliaderis, C. G. (2010). Physical and thermomechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids, 24, 49–59.

Zivanovic, S., Chi, S., & Draughon, A. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science, 70(1), 45–51.