Development of Anionically Decorated Caged Neurotransmitters: In Vitro Comparison of 7‐Nitroindolinyl‐ and 2‐(p‐Phenyl‐o‐nitrophenyl)propyl‐Based Photochemical Probes

ChemBioChem - Tập 17 Số 10 - Trang 953-961 - 2016
Srinivas Kantevari1,2, Stefan Passlick1, Hyung‐Bae Kwon3,4, Matthew T. Richers1, Bernardo L. Sabatini3, Graham C. R. Ellis‐Davies1
1Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, 10029 USA) graham.davies at mssm.edu
2Organic Chemistry Division II (CPC Division) CSIR—Indian Institute of Chemical Technology Hyderabad 500 007 India
3Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Cambridge, MA, 02115 USA
4Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA

Tóm tắt

AbstractNeurotransmitter uncaging, especially that of glutamate, has been used to study synaptic function for over 30 years. One limitation of caged glutamate probes is the blockade of γ‐aminobutyric acid (GABA)‐A receptor function. This problem comes to the fore when the probes are applied at the high concentrations required for effective two‐photon photolysis. To mitigate such problems one could improve the photochemical properties of caging chromophores and/or remove receptor blockade. We show that addition of a dicarboxylate unit to the widely used 4‐methoxy‐7‐nitroindolinyl‐Glu (MNI‐Glu) system reduced the off‐target effects by about 50–70 %. When the same strategy was applied to an electron‐rich 2‐(p‐Phenyl‐o‐nitrophenyl)propyl (PNPP) caging group, the pharmacological improvements were not as significant as in the MNI case. Finally, we used very extensive biological testing of the PNPP‐caged Glu (more than 250 uncaging currents at single dendritic spines) to show that nitro‐biphenyl caging chromophores have two‐photon uncaging efficacies similar to that of MNI‐Glu.

Từ khóa


Tài liệu tham khảo

Ellis-Davies G. C. R., 2009, Photolysis of Caged Glutamate for Use in the CNS, Encyclopedia of Neuroscience

10.1515/REVNEURO.2004.15.3.167

10.3762/bjoc.9.8

Barltrop J. A., 1966, Chem. Commun., 822

10.1021/ja00724a041

10.1002/anie.200600387

10.1002/ange.200600387

10.1038/nmeth1072

10.1021/cb900036s

10.1021/ja990931e

M. Matsuzaki G. C. R. Ellis-Davies H. Kasai Society for Neuroscience Annual Conference2000 426.12.

10.1016/S0040-4020(00)00745-6

10.1038/nn736

10.1021/cn100111a

10.1146/annurev.neuro.30.051606.094222

G. C. R. Ellis-Davies O. Meucci S. Shimizu Society for Neuroscience Annual Conference2007 480.6/S14.

10.1038/nchembio.321

Fino E., 2009, Front. Neural Circuits, 2

10.1016/j.neuropharm.2012.05.010

10.1021/ja4019379

10.1016/j.jneumeth.2009.04.022

10.1016/j.tet.2007.07.030

10.1016/j.neuron.2010.03.030

10.1039/b800683k

10.1039/c2pp05360h

10.1002/hlca.200490060

10.1002/cbic.200700651

10.1038/nprot.2010.193

10.1113/jphysiol.2002.036376

10.1021/jo00116a034

10.1039/b504922a

10.1523/JNEUROSCI.1519-07.2007

10.1016/j.neuron.2014.04.004

10.1016/j.neuron.2014.12.051

10.1038/nn.3682

10.1038/ncomms9436

10.1002/cbic.200600111

10.1021/ja408225k

10.1021/jo049071x

10.1002/1522-2675(20010613)84:6<1601::AID-HLCA1601>3.0.CO;2-S

10.1002/hlca.200590067

10.1021/ja072355p

10.1002/chem.200800613

10.1016/j.neuron.2012.01.027

10.1016/S0165-0270(01)00451-4

10.1038/nbt899

10.1021/cr050054x

10.1002/chem.200501393

10.1021/jo00292a038

10.1073/pnas.91.19.8752

10.1021/ol5035035

10.1039/C5CC07664A

10.1039/C4CP05812G

10.1021/ol5033046

10.1021/jo501425p

10.1038/nn.3256

10.1021/cn400185r