Development and validation of a machine learning-derived radiomics model for diagnosis of osteoporosis and osteopenia using quantitative computed tomography

BMC Medical Imaging - Tập 22 - Trang 1-9 - 2022
Qianrong Xie1,2, Yue Chen3, Yimei Hu4, Fanwei Zeng1, Pingxi Wang5, Lin Xu6, Jianhong Wu5, Jie Li1, Jing Zhu7, Ming Xiang3,8, Fanxin Zeng1,3
1Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
2Department of Laboratory Medicine, The Third People’s Hospital of Chengdu, Chengdu, China
3Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
4Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
5Department of Bone Disease, Dazhou Central Hospital, Dazhou, China
6Department of Medical Imaging, Dazhou Central Hospital, Dazhou, China
7Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
8Department of Orthopedics, Sichuan Provincial Orthopedic Hospital, Chengdu, China

Tóm tắt

To develop and validate a quantitative computed tomography (QCT) based radiomics model for discriminating osteoporosis and osteopenia. A total of 635 patients underwent QCT were retrospectively included from November 2016 to November 2019. The patients with osteopenia or osteoporosis (N = 590) were divided into a training cohort (N = 414) and a test cohort (N = 176). Radiomics features were extracted from the QCT images of the third lumbar vertebra. Minimum redundancy and maximum relevance and least absolute shrinkage and selection operator were used for data dimensional reduction, features selection and radiomics model building. Multivariable logistic regression was applied to construct the combined clinical-radiomic model that incorporated radiomics signatures and clinical characteristics. The performance of the combined clinical-radiomic model was evaluated by the area under the curve of receiver operator characteristic curve (ROC–AUC), accuracy, specificity, sensitivity, positive predictive value, and negative predictive value. The patients with osteopenia or osteoporosis were randomly divided into training and test cohort with a ratio of 7:3. Six more predictive radiomics signatures, age, alkaline phosphatase and homocysteine were selected to construct the combined clinical-radiomic model for diagnosis of osteoporosis and osteopenia. The AUC of the combined clinical-radiomic model was 0.96 (95% confidence interval (CI), 0.95 to 0.98) in the training cohort and 0.96 (95% CI 0.92 to 1.00) in the test cohort, which were superior to the clinical model alone (training-AUC = 0.81, test-AUC = 0.79). The calibration curve demonstrated that the radiomics nomogram had good agreement between prediction and observation and decision curve analysis confirmed clinically useful. The combined clinical-radiomic model that incorporates the radiomics score and clinical risk factors, can serve as a reliable and powerful tool for discriminating osteoporosis and osteopenia.

Tài liệu tham khảo