Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum
Tóm tắt
In silico genome-scale metabolic models enable the analysis of the characteristics of metabolic systems of organisms. In this study, we reconstructed a genome-scale metabolic model of Corynebacterium glutamicum on the basis of genome sequence annotation and physiological data. The metabolic characteristics were analyzed using flux balance analysis (FBA), and the results of FBA were validated using data from culture experiments performed at different oxygen uptake rates. The reconstructed genome-scale metabolic model of C. glutamicum contains 502 reactions and 423 metabolites. We collected the reactions and biomass components from the database and literatures, and made the model available for the flux balance analysis by filling gaps in the reaction networks and removing inadequate loop reactions. Using the framework of FBA and our genome-scale metabolic model, we first simulated the changes in the metabolic flux profiles that occur on changing the oxygen uptake rate. The predicted production yields of carbon dioxide and organic acids agreed well with the experimental data. The metabolic profiles of amino acid production phases were also investigated. A comprehensive gene deletion study was performed in which the effects of gene deletions on metabolic fluxes were simulated; this helped in the identification of several genes whose deletion resulted in an improvement in organic acid production. The genome-scale metabolic model provides useful information for the evaluation of the metabolic capabilities and prediction of the metabolic characteristics of C. glutamicum. This can form a basis for the in silico design of C. glutamicum metabolic networks for improved bioproduction of desirable metabolites.
Tài liệu tham khảo
Kinoshita S, Udaka S, Shimono M: Studies on the amino acid fermentation. Appl Microbiol Jpn. 1957, 3: 193-205. 10.2323/jgam.3.193.
Udaka S: Screening method for microorganisms accumulating metabolites and its use in the isolation of micrococcus glutamicus. Jour Bacteriol. 1960, 79 (5): 754-755.
Nakayama K, Kitada S, Kinoshita S: Studies on lysinefermentation. I. The control mechanism on lysine accumulation by homoserine and threonine. J Gen Appl Microbiol. 1961, 7: 145-154. 10.2323/jgam.7.145.
Kumagai H: Microbial Production of Amino Acids in Japan. Adv Biochem Eng Biotechnol. 2000, 69: 71-85.
Leuchtenberger W, Huthmacher K, Drauz K: Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol. 2005, 69 (1): 1-8. 10.1007/s00253-005-0155-y.
Okino S, Inui M, Yukawa H: Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol. 2005, 68 (4): 475-480. 10.1007/s00253-005-1900-y.
Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H: Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol. 2004, 7 (4): 182-196. 10.1159/000079827.
Stephanopoulos G: Metabolic fluxes and metabolic engineering. Metab Eng. 1999, 1 (1): 1-11. 10.1006/mben.1998.0101.
de Graaf AA, Eggeling L, Sahm H: Metabolic engineering for L-lysine production by Corynebacterium glutamicum. Adv Biochem Eng Biotechnol. 2001, 73: 9-29.
Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S, Shimizu H: Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb Cell Fact. 2007, 6: 19- 10.1186/1475-2859-6-19.
Edwards JS, Palsson BO: The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA. 2000, 97 (10): 5528-5533. 10.1073/pnas.97.10.5528.
Edwards JS, Ibarra RU, Palsson BO: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol. 2001, 19 (2): 125-130. 10.1038/84379.
Feist AM, Scholten JC, Palsson BO, Brockman FJ, Ideker T: Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol. 2006, 2:
Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol. 2007, 3: 121- 10.1038/msb4100155.
Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R: Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem. 2007, 282 (39): 28791-28799. 10.1074/jbc.M703759200.
Thiele I, Vo TD, Price ND, Palsson BO: Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol. 2005, 187 (16): 5818-5830. 10.1128/JB.187.16.5818-5830.2005.
Oliveira AP, Nielsen J, Forster J: Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 2005, 5: 39- 10.1186/1471-2180-5-39.
Duarte NC, Herrgard MJ, Palsson BO: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004, 14 (7): 1298-1309. 10.1101/gr.2250904.
Sheikh K, Forster J, Nielsen LK: Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol Prog. 2005, 21 (1): 112-121. 10.1021/bp0498138.
Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO: Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA. 2007, 104 (6): 1777-1782. 10.1073/pnas.0610772104.
Ibarra RU, Edwards JS, Palsson BO: Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature. 2002, 420 (6912): 186-189. 10.1038/nature01149.
Fong SS, Palsson BO: Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet. 2004, 36 (10): 1056-1058. 10.1038/ng1432.
Lee SJ, Lee DY, Kim TY, Kim BH, Lee J, Lee SY: Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol. 2005, 71 (12): 7880-7887. 10.1128/AEM.71.12.7880-7887.2005.
Alper H, Miyaoku K, Stephanopoulos G: Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol. 2005, 23 (5): 612-616. 10.1038/nbt1083.
Kjeldsen KR, Nielsen J: In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng. 2009, 102 (2): 583-597. 10.1002/bit.22067.
Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahren D, Tsoka S, Darzentas N, Kunin V, Lopez-Bigas N: Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. 2005, 33 (19): 6083-6089. 10.1093/nar/gki892.
Eggeling L, Bott M: Handbook of corynebacterium glutamicum. 2005, Boca Raton: CRC Press
Burkovski A: Corynebacteria: Genomics and Molecular Biology. 2008, Norforlk: Caister Academic Press
Birch HL, Alderwick LJ, Bhatt A, Rittmann D, Krumbach K, Sing A, Bai Y, Lowary TL, Eggeling L, Besra GS: Biosynthesis of mycobacterial arabinogalactan: identification of a novel α (1 → 3) arabinofuranosyltransferase. Molecular Microbiology. 2008, 69 (5): 1191-1206.
Kacem R, De Sousa-D'Auria C, Tropis M, Chami M, Gounon P, Leblon G, Houssin C, Daffe M: Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum. Microbiology. 2004, 150 (Pt 1): 73-84. 10.1099/mic.0.26583-0.
Cocaign-Bousquet M, Guyonvarch A, Lindley ND: Growth Rate-Dependent Modulation of Carbon Flux through Central Metabolism and the Kinetic Consequences for Glucose-Limited Chemostat Cultures of Corynebacterium glutamicum. Appl Environ Microbiol. 1996, 62 (2): 429-436.
Crick DC, Mahapatra S, Brennan PJ: Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology. 2001, 11 (9): 107R-118R. 10.1093/glycob/11.9.107R.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, et al: The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol. 2003, 104 (1–3): 5-25. 10.1016/S0168-1656(03)00154-8.
Cocaign-Bousquet M, Lindley ND: Pyruvate overflow and carbon flux within the central metabolic pathways of Corynebacterium glutamicum during growth on lactate. Enzyme and Microbial Technology. 1995, 17 (3): 260-267. 10.1016/0141-0229(94)00023-K.
Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori T, Shimizu H: Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng. 2005, 7 (2): 59-69. 10.1016/j.ymben.2004.10.001.
Ikeda M, Nakagawa S: The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol. 2003, 62 (2–3): 99-109. 10.1007/s00253-003-1328-1.
Schrumpf B, Schwarzer A, Kalinowski J, Puhler A, Eggeling L, Sahm H: A functionally split pathway for lysine synthesis in Corynebacterium glutamicium. J Bacteriol. 1991, 173 (14): 4510-4516.
Sonntag K, Eggeling L, De Graaf AA, Sahm H: Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy. Eur J Biochem. 1993, 213 (3): 1325-1331. 10.1111/j.1432-1033.1993.tb17884.x.
Vallino JJ, Stephanopoulos G: Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Reprinted from Biotechnology and Bioengineering, Vol. 41, Pp 633–646 (1993). Biotechnol Bioeng. 2000, 67 (6): 872-885. 10.1002/(SICI)1097-0290(20000320)67:6<872::AID-BIT21>3.0.CO;2-X.
Shiio I, Otsuka SI, Takahashi M: Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular premeability of amino acids. J Biochem. 1962, 51: 56-62.
Takinami K, Yoshida H, Tsuri H, Okada H: Biochemical effects of fatty acid and its derivatives on L-glutamic acid fermentation. Part III. Biotin-Tween 60 relationship in the accumulation of L-glutamic acid and the growth of Brevibacterium lactofermentum. Agric Biol Chem. 1965, 29: 351-359.
Nunheimer TD, Birnbaum J, Ihnen ED, Demain AL: Product inhibition of the fermentative formation of glutamic acid. Appl Microbiol. 1970, 20 (2): 215-217.
Shimizu H, Tanaka H, Nakato A, Nagahisa K, Kimura E, Shioya S: Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum. Bioprocess Biosyst Eng. 2003, 25 (5): 291-298.
Bott M: Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends Microbiol. 2007, 15 (9): 417-425. 10.1016/j.tim.2007.08.004.
Nakamura J, Hirano S, Ito H, Wachi M: Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol. 2007, 73 (14): 4491-4498. 10.1128/AEM.02446-06.
Aoki R, Wada M, Takesue N, Tanaka K, Yokota A: Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum. Biosci Biotechnol Biochem. 2005, 69 (8): 1466-1472. 10.1271/bbb.69.1466.