Developing a mathematical model of the co-author recommender system using graph mining techniques and big data applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Boyer-Kassem T, Mayo-Wilson C, Weisberg M. In scientific collaboration and collective knowledge: new essays. Oxford: Oxford University Press; 2017.
Beaver D, Rosen R. Studies in scientific collaboration. Part I. The professional origins of scientific co-authorship. Scientometrics. 1978;1:65–84. https://doi.org/10.1007/bf02016840.
Wagner-Dobler R. Continuity and discontinuity of collaboration behavior since 1800- from a bibliometric point of view. Scientometrics. 2001;52:503–17. https://doi.org/10.1023/A:1014208219788.
Heydari M, Safavi Z. The survey of collaborative coefficient of article authors in journal of research in medical sciences. Research Med. 2012;36(2):109–13 [in Persian].
Das K, Samanta S, Pal M. Study on centrality measures in social networks: a survey. Soc NetW. 2018. https://doi.org/10.1007/s13278-018-0493-2.
Ranganathan S, Gribskov M, Nakai K, Schönbach C. Encyclopedia of bioinformatics and computational biology. Amsterdam: Elsevier; 2019.
Chaoji M, AlHasan M. ORIGAMI: a novel and effective approach for mining representative orthogonal graph patterns. Statistical Analysis Data Mining. 2008;1:67–84. https://doi.org/10.1002/sam.10004.
Wilkinson S, Silverman D. Focus group research. Qualitative research: Theory, method, and practice.2004; 177-199.
Kiani M. Information ecology in field of bioinformatics with emphasis on thematic relationships. [dissertation].[Isfahan]. Isfahan university; 2020. [in Persian].
Saaty TL. The Analytical Hierarchy Process. New York: McGraw-Hill; 1980.
Krenn M, Zeilinger A. Predicting research trends with semantic and neural networks with an application in quantum physics. Proc Natl Acad Sci. 2020;117(4):1910–6. https://doi.org/10.1073/pnas.1914370116.
Ho T, Bui Q, Bui, M. Co-author Relationship Prediction in Bibliographic Network: A New Approach Using Geographic Factor and Latent Topic Information. SoICT. 2019: 69–77; https://doi-org.ezp.semantak.com/10.1145/3368926.3369668.
Cho H, Yu Y. Link prediction for interdisciplinary collaboration via co-authorship network. 2018; 25. https://doi.org/10.1007/s13278-018-0501-6.
Sadoughi F, Valinejadi A, Shirazi M S, khademi R. Social Network Analysis of Iranian Researchers on Medical Parasitology: A 41 Year Co- Authorship Survey. Iran J Parasitol. 2016; 11(2): 204-212.
Chien S, Chien T, Chang Y, Shih F. Patterns of international coauthor collaboration in bioinformatics. Biomedical Res Netw. 2017;1(6):1783–5.
Mooney R J, Roy L. Content-based book recommending using learning for text categorization. in Proceedings of the fifth ACM conference on Digital libraries, 2000: 195–204; https://doi.org/10.1145/336597.336662.
Abu-Jbara A, Radev D. Coherent citation-based summarization of scientific papers. in Proceedings of the 49th Annual Meeting of the Association for 60 Computational Linguistics. Human Language Technologies. 2011; 1: 500–509.
Teufel S, Moens M. Summarizing scientific articles: experiments with relevance and rhetorical status. Computational Linguistics. 2002;28(4):409–45.
Makarov I, Bulanov O, Zhukov L. Co-author Recommender System. Paper presented at the Models: Algorithms, and Technologies for Network Analysis, Cham; 2017.
Sarigöl E, Pfitzner R, Scholtes I, Garas A, Schweitzer F. Predicting scientific success based on coauthorship networks. EPJ Data Science. 2014;3(1):1–16. https://doi.org/10.1140/epjds/s13688-014-0009-x.
Cabanac G. Accuracy of inter-researcher similarity measures based on topical and social clues. Scientometrics. 2011;87:597–620. https://doi.org/10.1007/s11192-011-0358-1.
Cota RG, Ferreira AA, Nascimento C, Gonçalves MA, Laender AHF. An unsupervised heuristic-based hierarchical method for name disambiguation in bibliographic citations. J Am Soc Inf Sci. 2010;61:1853–70. https://doi.org/10.1002/asi.21363.
Han H, Giles C L, Zha H, Li C, Tsioutsiouliklis K. Two supervised learning approaches for name disambiguation in author citations. In ACM/IEEE-CS.. 2004: 296-305.
Wu F, Mi L, Li X, Huang L, Tong Y. Identifying Potential Standard Essential Patents Based on Text Mining and Generative Topographic Mapping. 2018 IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE), Beijing.2018; pp. 1-9
Wang C, Satuluri V, Parthasarathy S. Local Probabilistic Models for Link Prediction. ICDM,2007; 322–331; https://doi.org/10.1109/ICDM.2007.108 .
Salton G, Buckley C. Term-weighting approaches in automatic text Retrieval. Inf Process Manage. 1988;24(5):513–23.
Li X, Chen Y, Pettit B, Rijke M. Personalised Reranking of Paper Recommendations Using Paper Content and User Behavior. ACM Trans. Inf. Syst. 2019; 37, 2019: 23; https://doi.org/10.1145/3312528.
Chirita P A, Costache S, Nejdl W, Handschuh S. P-TAG: large scale automatic generation of personalized annotation tags for the web. WWW ‘07. Proceedings of the 16th international conference on World Wide Web.. 2007: 845-854.
Beel J, Gipp B, Langer S, et al. Research-paper recommender systems: a literature survey. Int J Digit Libr. 2016;17:305–38. https://doi.org/10.1007/s00799-015-0156-0.
Magara M, Ojo S, Zuva T. A comparative analysis of text similarity measures and algorithms in research paper recommender systems. ICTAS. 2018: 1-5; https://doi.org/10.1109/ictas.8368766.
Rathipriya R,.Thiyagarajann,R, Thangavel K. Recommendation of Web Pages using Weighted K-Means Clustering, International Journal of Computer Applications. 2014; 44-48.
Hasheminejad M, Motieeyan Z, Nasiri J. Comparison of a recommender text system with three criteria for measuring cosine similarity, Euclidian distance and Manhattan. The 6th International Congress on Development and Promotion of Fundamental Science and Technolpgy in Society. 2019 [in Persian].
Farhadi M, JamZad M. Examining similarity criteria in content-based image retrieval. CSJ. 2018;9:13–27 [in Persian].
Kamyar M. Automatic extraction of concepts from text based on linguistic methods. [dissertation].[Mashhad]. ferdowsi university of mashhad; 2014 [in Persian].
Davarpanah M. Investigating the compatibility of Persian article titles with their content. IRANDOC. 1996;12(2):1–12 [in Persian].
Nascimento C, Laender A, Silva A S, Gonçalves M A. A source independent framework for research paper recommendation. ACM/IEEE, 2011: 297–306.
Achary R. An author recommendation system using both content-based and collaborative filtering methods [dissertation]. [California]: California state university; 2011.
Aanonson J. Precision and Recall in Title keyword searchers. Information technology and libraries. 1987;14(3):162–70.
Ghare-Chamani J. Provide a way to suggest referrals in the referral network. [dissertation]. [Tehran]: Sharif University of Technology; 2013 [in Persian].
Sun Y, Barber R, Gupta M, Aggarwal CC, Han J. Co-author relationship prediction in heterogeneous bibliographic networks. ASONAM. 2011: 121–128. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5992571 .
Yu Q, Long C, Lv Y, Shao H, He P, Duan Z. Predicting Co-Author Relationship in Medical Co-Authorship Networks. PLOS ONE.2014; 9(7); https://doi.org/10.1371/journal.pone.0101214.
Roemer R, Borchardt R. Meaningful Metrics: A 21st Century Librarian’s Guide to Bibliometrics, Altmetrics and Research Impact. USA: ACRL; 2015.
Yan E, Guns R. Predicting and recommending collaborations: an author, institution, and country-level analysis. J Informetrics. 2014;8:295–309. https://doi.org/10.1016/j.joi.2014.01.008.
Brandão M, Moro. Affiliation Influence on Recommendation in Academic Social Networks. Proceedings of the 6th Alberto Mendelzon International Workshop on Foundations of Data Management. 2012; 230-234.
Andrikopoulos A, Samitas A, Kostaris K. Four decades of the Journal of Econometrics: coauthorship patterns and networks. J Econometrics. 2016;195(1):23–32. https://doi.org/10.1016/j.jeconom.2016.04.018.
Dahdouh K, Dakkak A, Oughdir L, et al. Large-scale e-learning recommender system based on Spark and Hadoop. J Big Data. 2019;6:2. https://doi.org/10.1186/s40537-019-0169-4.
Nassar N, Jafar A, Rahhal Y. Multi-criteria collaborative filtering recommender by fusing deep neural network and matrix factorization. J Big Data. 2020;7:34. https://doi.org/10.1186/s40537-020-00309-6.
Bunkley, N. (2008, March 3). Joseph Juran, 103, Pioneer in Quality Control, Dies (Published 2008). The New York Times. https://www.nytimes.com/2008/03/03/business/03juran.html.