Deubiquitylating enzymes and disease

Shweta Singhal1, Matthew C. Taylor2, Rohan T. Baker1
1Ubiquitin Laboratory, Division of Molecular Bioscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
2CSIRO Entomology, Canberra, Australia

Tóm tắt

Abstract Abstract Deubiquitylating enzymes (DUBs) can hydrolyze a peptide, amide, ester or thiolester bond at the C-terminus of UBIQ (ubiquitin), including the post-translationally formed branched peptide bonds in mono- or multi-ubiquitylated conjugates. DUBs thus have the potential to regulate any UBIQ-mediated cellular process, the two best characterized being proteolysis and protein trafficking. Mammals contain some 80–90 DUBs in five different subfamilies, only a handful of which have been characterized with respect to the proteins that they interact with and deubiquitylate. Several other DUBs have been implicated in various disease processes in which they are changed by mutation, have altered expression levels, and/or form part of regulatory complexes. Specific examples of DUB involvement in various diseases are presented. While no specific drugs targeting DUBs have yet been described, sufficient functional and structural information has accumulated in some cases to allow their rapid development. Publication history Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).

Từ khóa


Tài liệu tham khảo

Baker RT, Tobias JT, Varshavsky A: Ubiquitin-specific proteases of Saccharomyces cerevisiae. Cloning of UBP2 and UBP3, and functional analysis of the UBP gene family. J Biol Chem. 1992, 267: 23364-23375.

Matsui S, Sandberg AA, Negoro S, Seon BK, Goldstein G: Isopeptidase: a novel eukaryotic enzyme that cleaves isopeptide bonds. Proc Natl Acad Sci USA. 1982, 79: 1535-1539. 10.1073/pnas.79.5.1535.

Pickart CM, Rose IA: Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides. J Biol Chem. 1985, 260: 7903-7910.

Mayer AN, Wilkinson KD: Detection, resolution, and nomenclature of multiple ubiquitin carboxyl-terminal esterases from bovine calf thymus. Biochemistry. 1989, 28: 166-172. 10.1021/bi00427a024.

Amerik AY, Hochstrasser M: Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004, 1695: 189-207. 10.1016/j.bbamcr.2004.10.003.

Soboleva TA, Baker RT: Deubiquitinating enzymes: their functions and substrate specificity. Curr Protein Pept Sci. 2004, 5: 191-200. 10.2174/1389203043379765.

Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R: A genomic and functional inventory of deubiquitinating enzymes. Cell. 2005, 123: 773-786. 10.1016/j.cell.2005.11.007.

Wilkinson KD: Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. Faseb J. 1997, 11: 1245-1256.

Onno M, Nakamura T, Mariage-Samson R, Hillova J, Hill M: Human TRE17 oncogene is generated from a family of homologous polymorphic sequences by single-base changes. DNA Cell Biol. 1993, 12: 107-118.

Papa FR, Hochstrasser M: The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature. 1993, 366: 313-319. 10.1038/366313a0.

Oliveira AM, Hsi BL, Weremowicz S, Rosenberg AE, Dal Cin P, Joseph N, Bridge JA, Perez-Atayde AR, Fletcher JA: USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst. Cancer Res. 2004, 64: 1920-1923. 10.1158/0008-5472.CAN-03-2827.

Oliveira AM, Perez-Atayde AR, Inwards CY, Medeiros F, Derr V, Hsi BL, Gebhardt MC, Rosenberg AE, Fletcher JA: USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts and are absent in so-called secondary aneurysmal bone cysts. Am J Pathol. 2004, 165: 1773-1780.

Oliveira AM, Perez-Atayde AR, Dal Cin P, Gebhardt MC, Chen CJ, Neff JR, Demetri GD, Rosenberg AE, Bridge JA, Fletcher JA: Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene. 2005, 24: 3419-3426. 10.1038/sj.onc.1208506.

Martinu L, Masuda-Robens JM, Robertson SE, Santy LC, Casanova JE, Chou MM: The TBC (Tre-2/Bub2/Cdc16) domain protein TRE17 regulates plasma membrane-endosomal trafficking through activation of Arf6. Mol Cell Biol. 2004, 24: 9752-9762. 10.1128/MCB.24.22.9752-9762.2004.

Zapata JM, Pawlowski K, Haas E, Ware CF, Godzik A, Reed JC: A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J Biol Chem. 2001, 276: 24242-24252. 10.1074/jbc.M100354200.

Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W: Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature. 2002, 416: 648-653. 10.1038/nature737.

Hu M, Li P, Li M, Li W, Yao T, Wu JW, Gu W, Cohen RE, Shi Y: Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell. 2002, 111: 1041-1054. 10.1016/S0092-8674(02)01199-6.

Sheng Y, Saridakis V, Sarkari F, Duan S, Wu T, Arrowsmith CH, Frappier L: Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol. 2006, 13: 285-291. 10.1038/nsmb1067.

Li M, Brooks CL, Kon N, Gu W: A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell. 2004, 13: 879-886. 10.1016/S1097-2765(04)00157-1.

Cummins JM, Vogelstein B: HAUSP is required for p53 destabilization. Cell Cycle. 2004, 3: 689-692.

Hu M, Gu L, Li M, Jeffrey PD, Gu W, Shi Y: Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS Biol. 2006, 4 (2): e27-10.1371/journal.pbio.0040027.

Brooks CL, Gu W: p53 ubiquitination: Mdm2 and beyond. Mol Cell. 2006, 21: 307-315. 10.1016/j.molcel.2006.01.020.

Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY, El-Deiry WS, Yang X: Critical role for Daxx in regulating Mdm2. Nat Cell Biol. 2006, 8: 855-862. 10.1038/ncb1442.

Masuya D, Huang C, Liu D, Nakashima T, Yokomise H, Ueno M, Nakashima N, Sumitomo S: The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J Pathol. 2006, 208: 724-732. 10.1002/path.1931.

Boutell C, Everett RD: The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and Ubiquitinates p53. J Biol Chem. 2003, 278: 36596-36602. 10.1074/jbc.M300776200.

Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, Zhang RG, Liao J, Lee W, Edwards AM, Arrowsmith CH, Frappier L: Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell. 2005, 18: 25-36. 10.1016/j.molcel.2005.02.029.

Horst van der A, de Vries-Smits AM, Brenkman AB, van Triest MH, Broek van den N, Colland F, Maurice MM, Burgering BM: FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol. 2006, 8: 1064-1073. 10.1038/ncb1469.

Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, et al.: Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet. 2000, 25: 160-165. 10.1038/76006.

Bowen S, Gill M, Lee DA, Fisher G, Geronemus RG, Vazquez ME, Celebi JT: Mutations in the CYLD gene in Brooke-Spiegler syndrome, familial cylindromatosis, and multiple familial trichoepithelioma: lack of genotype-phenotype correlation. J Invest Dermatol. 2005, 124: 919-920. 10.1111/j.0022-202X.2005.23688.x.

Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G: The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature. 2003, 424: 801-805. 10.1038/nature01802.

Brummelkamp TR, Nijman SM, Dirac AM, Bernards R: Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature. 2003, 424: 797-801. 10.1038/nature01811.

Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G: CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature. 2003, 424: 793-796. 10.1038/nature01803.

Ikeda F, Dikic I: CYLD in ubiquitin signaling and tumor pathogenesis. Cell. 2006, 125: 643-645. 10.1016/j.cell.2006.05.003.

Reiley WW, Zhang M, Jin W, Losiewicz M, Donohue KB, Norbury CC, Sun SC: Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat Immunol. 2006, 7: 411-417. 10.1038/ni1315.

Zhang J, Stirling B, Temmerman ST, Ma CA, Fuss IJ, Derry JM, Jain A: Impaired regulation of NF-kappaB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J Clin Invest. 2006, 116: 3042-3049. 10.1172/JCI28746.

Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K, Kreike MM, Beyaert R, Blundell TL, Kilshaw PJ: A novel type of deubiquitinating enzyme. J Biol Chem. 2003, 278: 23180-23186. 10.1074/jbc.M301863200.

Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM: De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004, 430: 694-699. 10.1038/nature02794.

Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A: Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 2000, 289: 2350-2354. 10.1126/science.289.5488.2350.

Chen ZJ: Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol. 2005, 7: 758-765. 10.1038/ncb0805-758.

Krappmann D, Scheidereit C: A pervasive role of ubiquitin conjugation in activation and termination of IkappaB kinase pathways. EMBO Rep. 2005, 6: 321-326. 10.1038/sj.embor.7400380.

Sun L, Chen ZJ: The novel functions of ubiquitination in signaling. Curr Opin Cell Biol. 2004, 16: 119-126. 10.1016/j.ceb.2004.02.005.

Kaelin WG: Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer. 2002, 2: 673-682. 10.1038/nrc885.

Li Z, Na X, Wang D, Schoen SR, Messing EM, Wu G: Ubiquitination of a novel deubiquitinating enzyme requires direct binding to von Hippel-Lindau tumor suppressor protein. J Biol Chem. 2002, 277: 4656-4662. 10.1074/jbc.M108269200.

Li Z, Wang D, Na X, Schoen SR, Messing EM, Wu G: Identification of a deubiquitinating enzyme subfamily as substrates of the von Hippel-Lindau tumor suppressor. Biochem Biophys Res Commun. 2002, 294: 700-709. 10.1016/S0006-291X(02)00534-X.

Li Z, Wang D, Messing EM, Wu G: VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep. 2005, 6: 373-378. 10.1038/sj.embor.7400377.

Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003, 3: 721-732. 10.1038/nrc1187.

Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT, Walz T, Ploegh H, Finley D: Multiple associated proteins regulate proteasome structure and function. Mol Cell. 2002, 10: 495-507. 10.1016/S1097-2765(02)00638-X.

Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, Leggett DS, Gygi SP, King RW, Finley D: Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell. 2006, 127: 99-111. 10.1016/j.cell.2006.07.038.

Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y, Hathaway NA, Buecker C, Leggett DS, Schmidt M, King RW, Gygi SP, Finley D: Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell. 2006, 127: 1401-1413. 10.1016/j.cell.2006.09.051.

Anderson C, Crimmins S, Wilson JA, Korbel GA, Ploegh HL, Wilson SM: Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J Neurochem. 2005, 95: 724-731. 10.1111/j.1471-4159.2005.03409.x.

Wilson SM, Bhattacharyya B, Rachel RA, Coppola V, Tessarollo L, Householder DB, Fletcher CF, Miller RJ, Copeland NG, Jenkins NA: Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat Genet. 2002, 32: 420-425. 10.1038/ng1006.

Jackson P, Thompson RJ: The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis. J Neurol Sci. 1981, 49: 429-438. 10.1016/0022-510X(81)90032-0.

Ardley HC, Scott GB, Rose SA, Tan NG, Robinson PA: UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson's disease. J Neurochem. 2004, 90: 379-391. 10.1111/j.1471-4159.2004.02485.x.

Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, Lansbury PT, Ringe D, Petsko GA: Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci USA. 2006, 103: 4675-4680. 10.1073/pnas.0510403103.

Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, et al.: The ubiquitin pathway in Parkinson's disease. Nature. 1998, 395: 451-452. 10.1038/26652.

McNaught KS, Jenner P: Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci Lett. 2001, 297: 191-194. 10.1016/S0304-3940(00)01701-8.

McNaught KS, Perl DP, Brownell AL, Olanow CW: Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease. Ann Neurol. 2004, 56: 149-162. 10.1002/ana.20186.

Lowe J, McDermott H, Landon M, Mayer RJ, Wilkinson KD: Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J Pathol. 1990, 161: 153-160. 10.1002/path.1711610210.

Elbaz A, Levecque C, Clavel J, Vidal JS, Richard F, Correze JR, Delemotte B, Amouyel P, Alperovitch A, Chartier-Harlin MC, et al.: S18Y polymorphism in the UCH-L1 gene and Parkinson's disease: evidence for an age-dependent relationship. Mov Disord. 2003, 18: 130-137. 10.1002/mds.10326.

Lincoln S, Vaughan J, Wood N, Baker M, Adamson J, Gwinn-Hardy K, Lynch T, Hardy J, Farrer M: Low frequency of pathogenic mutations in the ubiquitin carboxy-terminal hydrolase gene in familial Parkinson's disease. Neuroreport. 1999, 10: 427-429. 10.1097/00001756-199902050-00040.

Maraganore DM, Farrer MJ, Hardy JA, Lincoln SJ, McDonnell SK, Rocca WA: Case-control study of the ubiquitin carboxy-terminal hydrolase L1 gene in Parkinson's disease. Neurology. 1999, 53: 1858-1860.

Maraganore DM, Lesnick TG, Elbaz A, Chartier-Harlin MC, Gasser T, Kruger R, Hattori N, Mellick GD, Quattrone A, Satoh J, et al.: UCHL1 is a Parkinson's disease susceptibility gene. Ann Neurol. 2004, 55: 512-521. 10.1002/ana.20017.

Colomer Gould VF: Mouse models of Machado-Joseph disease and other polyglutamine spinocerebellar ataxias. NeuroRx. 2005, 2: 480-483. 10.1602/neurorx.2.3.480.

Perez MK, Paulson HL, Pittman RN: Ataxin-3 with an altered conformation that exposes the polyglutamine domain is associated with the nuclear matrix. Hum Mol Genet. 1999, 8: 2377-2385. 10.1093/hmg/8.13.2377.

Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, Fischbeck KH, Pittman RN: Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol. 1997, 41: 453-462. 10.1002/ana.410410408.

Fujigasaki H, Uchihara T, Koyano S, Iwabuchi K, Yagishita S, Makifuchi T, Nakamura A, Ishida K, Toru S, Hirai S, et al.: Ataxin-3 is translocated into the nucleus for the formation of intranuclear inclusions in normal and Machado-Joseph disease brains. Exp Neurol. 2000, 165: 248-256. 10.1006/exnr.2000.7479.

Burnett B, Li F, Pittman RN: The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet. 2003, 12: 3195-3205. 10.1093/hmg/ddg344.

Chow MK, Mackay JP, Whisstock JC, Scanlon MJ, Bottomley SP: Structural and functional analysis of the Josephin domain of the polyglutamine protein ataxin-3. Biochem Biophys Res Commun. 2004, 322: 387-394. 10.1016/j.bbrc.2004.07.131.

Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D'Andrea AD, Bernards R: The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell. 2005, 17: 331-339. 10.1016/j.molcel.2005.01.008.

Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, Ishov AM, Tommerup N, Vissing H, Sekido Y, et al.: BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene. 1998, 16: 1097-1112. 10.1038/sj.onc.1201861.

Schoenfeld AR, Apgar S, Dolios G, Wang R, Aaronson SA: BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Mol Cell Biol. 2004, 24: 7444-7455. 10.1128/MCB.24.17.7444-7455.2004.

Gray DA, Inazawa J, Gupta K, Wong A, Ueda R, Takahashi T: Elevated expression of Unph, a proto-oncogene at 3p21.3, in human lung tumors. Oncogene. 1995, 10: 2179-2183.

Blanchette P, Gilchrist CA, Baker RT, Gray DA: Association of UNP, a ubiquitin-specific protease, with the pocket proteins pRb, p107 and p130. Oncogene. 2001, 20: 5533-5537. 10.1038/sj.onc.1204823.

DeSalle LM, Latres E, Lin D, Graner E, Montagnoli A, Baker RT, Pagano M, Loda M: The de-ubiquitinating enzyme Unp interacts with the retinoblastoma protein. Oncogene. 2001, 20: 5538-5542. 10.1038/sj.onc.1204824.

Wada K, Kamitani T: UnpEL/Usp4 is ubiquitinated by Ro52 and deubiquitinated by itself. Biochem Biophys Res Commun. 2006, 342: 253-258. 10.1016/j.bbrc.2006.01.144.

Di Donato F, Chan EK, Askanase AD, Miranda-Carus M, Buyon JP: Interaction between 52 kDa SSA/Ro and deubiquitinating enzyme UnpEL: a clue to function. Int J Biochem Cell Biol. 2001, 33: 924-934. 10.1016/S1357-2725(01)00055-3.

Gesbert F, Malarde V, Dautry-Varsat A: Ubiquitination of the common cytokine receptor gammac and regulation of expression by an ubiquitination/deubiquitination machinery. Biochem Biophys Res Commun. 2005, 334: 474-480. 10.1016/j.bbrc.2005.06.121.

Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Lechpammer M, Huesken D, Zimmermann J, Signoretti S, Loda M: The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell. 2004, 5: 253-261. 10.1016/S1535-6108(04)00055-8.

Priolo C, Tang D, Brahamandan M, Benassi B, Sicinska E, Ogino S, Farsetti A, Porrello A, Finn S, Zimmermann J, Febbo P, Loda M: The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res. 2006, 66: 8625-8632. 10.1158/0008-5472.CAN-06-1374.

Huang Y, Baker RT, Fischer-Vize JA: Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene. Science. 1995, 270: 1828-1831. 10.1126/science.270.5243.1828.

Chen X, Zhang B, Fischer JA: A specific protein substrate for a deubiquitinating enzyme: Liquid facets is the substrate of Fat facets. Genes Dev. 2002, 16: 289-294. 10.1101/gad.961502.

Dang LC, Melandri FD, Stein RL: Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry. 1998, 37: 1868-1879. 10.1021/bi9723360.

Russell NS, Wilkinson KD: Deubiquitinating enzyme purification, assay inhibitors, and characterization. Methods Mol Biol. 2005, 301: 207-219.

Pickart CM, Raasi S: Controlled synthesis of polyubiquitin chains. Methods Enzymol. 2005, 399: 21-36. 10.1016/S0076-6879(05)99002-2.

Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, Harada T, Ichihara N, Wakana S, Kikuchi T, Wada K: Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet. 1999, 23: 47-51.

Sakurai M, Ayukawa K, Setsuie R, Nishikawa K, Hara Y, Ohashi H, Nishimoto M, Abe T, Kudo Y, Sekiguchi M, Sato Y, Aoki S, Noda M, Wada K: Ubiquitin C-terminal hydrolase L1 regulates the morphology of neural progenitor cells and modulates their differentiation. J Cell Sci. 2006, 119: 162-71. 10.1242/jcs.02716.

Ritchie KJ, Hahn CS, Kim KI, Yan M, Rosario D, Li L, de la Torre JC, Zhang DE: Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med. 2004, 10: 1374-1378. 10.1038/nm1133.

Mason DE, Ek J, Peters EC, Harris JL: Substrate profiling of deubiquitin hydrolases with a positional scanning library and mass spectrometry. Biochemistry. 2004, 43: 6535-6544. 10.1021/bi049722j.

Cheon KW, Baek KH: HAUSP as a therapeutic target for hematopoietic tumors (review). Int J Oncol. 2006, 28: 1209-1215.