Determination of the Quantum Yield of Intersystem Crossing of Rose Bengal

Helvetica Chimica Acta - Tập 70 Số 7 - Trang 1760-1773 - 1987
Patricia Murasecco‐Suardi1,2, Ernst Gassmann1,3, André M. Braun4,5,1, Esther Oliveros4,5,1,6
1Institut de chimie physique, Ecole Polytechnique Fédérale de Lausanne, CH–1015 Lausanne
2Part of the thesis of P.M.-S., EPF Lausanne, 1988.
3Part of the thesis No. 519 of E.G., EPF Lausanne, 1984.
4André M. Braun, Institut de chimie physique, Ecole Polytechnique Fédérale de Lausanne, CH–1015 Lausanne
5Esther Oliveros, Institut de chimie physique, Ecole Polytechnique Fédérale de Lausanne, CH–1015 Lausanne
6Laboratoire IMRCP, UA au CNRS n° 470, Unviersité Paul Sabatier, F–31062 Toulouse Cedex.

Tóm tắt

AbstractThe quantum yield of intersystem crossing (Φisc) of a sensitizer is related to the quantum yield of singlet‐oxygen production (Φ(1O2)) by the efficiency of the energy transfer (φet) and is an important parameter in the evaluation of potential applications of sensitized photo‐oxidations. Using two different laser photolysis techniques, the energy‐transfer method and the partial saturation method, Φisc of rose bengal has been determined in MeOH and in aqueous solutions. The results confirm that with Φisc(H2O) = 1.05(± 0.06) and Φisc(MeOH)=0.90(±0.08), the generally assumed relation Φisc · φet = Φ(1O2), with φet = 1, cannot be maintained any longer (Φ(1O2, H2O) = 0.75 and Φ(1O2, MeOH) = 0.76). During these experiments, a second intermediate has been observed which is produced from the triplet state of rose bengal and, stabilized in a anionic micellar solution, has been shown to be the radical cation of the sensitizer. The efficiency of the electron transfer has been evaluated from transient absorption and bleaching recordings, and it seems conclusive to attribute the results to the difference between Φisc and Φ(1O2).

Từ khóa


Tài liệu tham khảo

Schenck G. O., 1954, Naturwissenschaften, 32, 157

10.1351/pac197543030481

10.1016/S0040-4020(01)97932-3

Frimer A. A., 1983, The Chemistry of Functional Groups, Peroxides

Frimer A. A., 1985, Singlet O2

Braun A. M., 1986, Technologie Photochimique

10.1007/978-1-4684-4406-3

10.1111/j.1751-1097.1986.tb05648.x

10.1016/S0040-4020(01)96591-3

Reference [5] Vol. IV.

10.1111/j.1751-1097.1987.tb08407.x

10.1111/j.1751-1097.1971.tb06164.x

D.Fompeydie P.Levillain Bull. Soc. Chim. Fr. 11980 459;

D.Fompeydie A.Rabaron P.Levillain R.Bourdon J. Chem. Res. (M)1981 4052.

10.1111/j.1751-1097.1983.tb04472.x

10.1246/bcsj.42.1223

10.1016/0009-2614(72)85051-6

10.1016/0009-2614(76)80350-8

10.1098/rspa.1967.0141

10.1351/pac196409040507

G. O.Schenck K.Gollnick Forschungsberichte des Landes Nordrhein‐Westfalen1963 Nr. 1256.

10.1111/j.1751-1097.1969.tb07287.x

10.1021/ja00455a017

10.1016/0006-291X(74)90854-7

10.1021/ja00488a048

10.1002/hlca.19770600818

10.1111/j.1751-1097.1981.tb09017.x

10.1007/978-1-4684-2580-2_5

10.1098/rspa.1968.0127

10.1039/tf9716701904

10.1111/j.1751-1097.1974.tb06596.x

10.1063/1.431991

10.1111/j.1751-1097.1978.tb07709.x

10.1016/0009-2614(79)80187-6

10.1021/j100456a006

10.1002/hlca.19810640610

10.1016/0047-2670(85)85086-3

10.1021/j100265a021

10.1063/1.555770

Wilkinson F., 1975, Organic Molecular Photophysics, 95

Murov S. L., 1973, Handbook of Photochemistry

10.1016/0009-2614(75)80197-7

10.1039/f19726800112

10.1111/j.1749-6632.1970.tb39307.x

10.1002/anie.198006751

Dürr H., 1985, Nouv. J. Chim., 9, 717