Determination of CHLORPYRIFOS by GC/ECD in water and its sorption mechanism study in a RHODIC FERRALSOL
Tóm tắt
The validation of chromatographic methods is a costly process, however necessary, especially with regard to the validation of methods that accurately determine concentrations of pesticides in different environmental compartments. This research aimed at the development and validation of a simple and fast method for the determination of chlorpyrifos concentrations in water by means of a gas chromatograph with electron capture detection (GC/ECD), and to investigate chlorpyrifos dynamics of adsorption in a Rhodic Ferralsol in Southern Brazilian conditions. The developed chromatographic method was based in EPA 8141 method. Parameters to be checked for method validation were: Selectivity/specificity, linearity, precision, accuracy, robustness, limit of detection (LOD) and limit of quantitation (LOQ). Were employed the following methodologies for the validation process: ANVISA Resolution 899, DOQ-CGCRE-008 and FDA Bioanalytical Method Validation Guide. Also, through laboratory tests, the sorption dynamics of chlorpyrifos in Rhodic Ferralsol was evaluated. Thus, the soil was contaminated with increasing concentrations of chlorpyrifos, which were subjected to solid-liquid extraction with SPE cartridge Chromabond® C18 ec. The obtained results were submitted to the models of Langmuir, Freundlich, Dubinin-Radushkevich and Sips. By this method, chlorpyrifos peaks are obtained at 16.9 min, demonstrating practicality and low cost. This method exhibits precision and sensitivity, with satisfactory LQ and LQ values. The models of Langmuir, Freundlich, Dubinin-Radushkevich and Sips suggest the occurrence of simultaneous adsorption in mono and multilayer of chlorpyrifos in Rhodic Ferralsol colloids, as well as the predominance of a chemical, high energy binding process (irreversible). However, the chemisorption of chlorpyrifos is more related to the good fit found for Dubinin-Radushkevich sorption energy values (9.861 and 11.079 KJ mol−1) and Qm values estimated by Langmuir (485.55 and 389.61 μg g−1 for linear and nonlinear model).
Tài liệu tham khảo
Alves TC, Pinheiro A, Schwantes D, Gonçalves AC Jr. Organic micropollutant adsorption in chemically modified forestry Pinus elliotti spp barks. The Journal of Solid Waste Technology and Management. 2018;44:142–52. https://doi.org/10.5276/JSWTM.2018.142.
Martins CX, Salvador P de M, Jesus JD de, Ferreira LFR, Américo JHP, Torres NH (2014). Análise de atrazina em amostras de água e solo por cromatografia gasosa (GC-ECD). Bioenergia em revista: diálogos, 3(1):128–138. Available in: http://fatecpiracicaba.edu.br/revista/index.php/bioenergiaemrevista/article/view/124/80. Access in January 2019.
Abdulkareem JH, Abdulkadir A, Abdu N. A review of different types of lysimeter used in solute transport studies. International Journal of Plant & Soil Science. 2015;8(3):1–14. https://doi.org/10.9734/IJPSS/2015/18098.
Sharma DK, Kumar A, Mahender. A simple and fast solid-phase extraction GC-ECD method for the routine assessment of atrazine residues in agricultural produces. J Chromatogr Sep Tech. 2017;8(1):1–4. https://doi.org/10.4172/2157-7064.1000353.
Barchańska H, Czaplicka M, Giemza A. Simultaneous determination of selected insecticides and atrazine in soil by MAE–GC–ECD. Archives of Environmental Protection. 2013;39(1):27–40. https://doi.org/10.2478/aep-2013-0003.
Javaroni CA, Landgraf MD, Rezende MOO. Comportamento dos herbicidas atrazina e alaclor aplicados em solo preparado para o cultivo de cana-de-açúcar. Quim Nova. 1999;22(1):58–64. https://doi.org/10.1590/S0100-40421999000100012.
Comber SDW. Abiotic persistence of atrazine and simazine in water. Pestic Sci. 1999;55:696–702. https://doi.org/10.1002/(SICI)1096-9063(199907)55:7<696::AID-PS11>3.0.CO;2-7.
Vonberg D, Vanderborght J, Cremer N, Pütz T, Herbst M, Vereecken H. 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany. Water Res. 2014;50:294–306. https://doi.org/10.1016/j.watres.2013.10.032.
Wang X, Li J, Xing H, Xu S. Review of toxicology of atrazine and chlorpyrifos on fish. J Northeast Agric Univ. 2011;18(4):88–92. https://doi.org/10.1016/S1006-8104(12)60031-2.
USEPA - United States Environmental Protection Agency (1992). Method 619: The determination of triazine pesticides in municipal and industrial Wastewater. Available in: https://www.epa.gov/sites/production/files/2015-10/documents/method_619_1992.pdf. Access in January 2019.
USEPA - United States Environmental Protection Agency (1995a). Method EPA 505: Analysis of organohalide pesticides and commercial polychlorinated biphenyl (PCB) products in water by microextraction and gas chromatography. Available in: https://www.o2si.com/docs/epa-method-505.pdf. Access in January 2019.
USEPA - United States Environmental Protection Agency (1995b). Method EPA 525.2: Determination of organic compounds in drinking water by liquid-solid extraction and capillary column Gas Chromatography/Mass Spectrometry. Available in: https://www.epa.gov/sites/production/files/2015-10/documents/method_525-2_rev-2_1995.pdf. Access in January 2019.
USEPA - United States Environmental Protection Agency (1995c). Method 551.1: Determination of chlorination disinfection byproducts, chlorinated solvents, and halogenated pesticides/herbicides in drinking water by liquid-liquid extraction and gas chromatography with electron-capture detection. Available in: https://www.epa.gov/sites/production/files/2015-06/documents/epa-551.1.pdf. Access in January 2019.
USEPA - United States Environmental Protection Agency (2007). Method EPA 8141B: Organophosphorus compounds by gas chromatography. Available in: https://www.epa.gov/sites/production/files/2015-12/documents/8141b.pdf. Access in January 2019.
Kin CM, Huat TG (2009). Comparison of HS-SDME with SPME and SPE for the determination of eight Organochlorine and Organophosphorus pesticide residues in food matrices. J Chromatogr Sci, 47:694–699. https://academic.oup.com/chromsci/article-abstract/47/8/694/285339
Dalvie MA, Sinanovic E, London L, Cairncross E, Solomon A, Adam H. Cost analysis of ELISA, solid-phase extraction, and solid-phase microextraction for the monitoring of pesticides in water. Environ Res. 2005;98:143–50. https://doi.org/10.1016/j.envres.2004.09.002.
Simon D, Helliwell S, Robards K. Analytical chemistry of chlorpyrifos and diuron in aquatic ecosystems. Anal Chim Acta. 1998;360(1–3):1–16. https://doi.org/10.1016/S0003-2670(97)00680-6.
Darwiche W, Gay-Quéheillard J, Delanaud S, Sabbouri HEKE, Khachfe H, Joumaa W, et al. Impact of chronic exposure to the pesticide chlorpyrifos on respiratory parameters and sleep apnea in juvenile and adult rats. PLoS One. 2018. https://doi.org/10.1371/journal.pone.0191237.
Bortoluzzi EC, Rheinheimer DS, Gonçalves CS, Pelegrini JBR, Zanella R, Copetti ACC. Contaminação de águas superficiais por agrotóxicos em função do uso do solo numa microbacia hidrográfica de Agudo, RS. Rev. bras. eng. agríc. Campina Grande. 2006;10(4):881–7. https://doi.org/10.1590/S1415-43662006000400015.
Marchesan E, Zanella R, de Avila LA, Camargo ER, Machado SLO, Macedo VRM. Rice herbicide monitoring in two brazilian rivers during the growing season. Sci Agric. 2007;64(2):131–7. https://doi.org/10.1590/S0103-90162007000200005.
Han Y, Mo R, Yuan X, Zhong D, Tang F, Caifen Y, et al. Pesticide residues in nut-planted soils of China and their relationship between nut/soil. Chemosphere. 2017;180:42–7. https://doi.org/10.1016/j.chemosphere.2017.03.138.
Phung DT, Connell D, Miller G, Hodge M, Patel R, Cheng R, et al. Biological monitoring of chlorpyrifos exposure to rice farmers in Vietnam. Chemosphere. 2012;87(4):294–300. https://doi.org/10.1016/j.chemosphere.2011.11.075.
Wang D, Singhasemanon N, Goh KS. A statistical assessment of pesticide pollution in surface waters using environmental monitoring data: Chlorpyrifos in Central Valley, California. Sci Total Environ. 2016;571:332–41. https://doi.org/10.1016/j.scitotenv.2016.07.159.
Miclean M, Şenilă L, Cadar O, Roman M, Levei E, Tănăselia C, et al. Determination of chlorpyrifos in surface water using SPE-DI-SPME/GC-ECD. Stud U Babes-Bol Che. 2014;59(3):43–8.
National Pesticide Information Center. Accessed in August 2018, Available at: http://npic.orst.edu/
ANVISA (Agência Nacional de Vigilância Sanitária) - Resolução n°899 de 29 de Maio de 2003 (2003). Guia para validação de métodos analíticos e bioanalíticos métodos analíticos. Available in: http://portal.anvisa.gov.br/documents/10181/2718376/RE_899_2003_COMP.pdf/ff6fdc6b-3ad1-4d0f-9af2-3625422e6f4b. Access in January 2019
INMETRO - Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (2016) - Orientações sobre validação de métodos e ensaios químicos, DOQ-CGCRE-008. Available in: http://www.inmetro.gov.br/Sidoq/Arquivos/CGCRE/DOQ/DOQ-CGCRE-8_05.pdf. Access in January 2019
Pavan MA, Bloch MF, Zempulski HC, Miyazawa M, Zocoler DC. Manual de análises químicas de solo e controle de qualidade. Londrina: IAPAR; 1992.
AOAC - Association of Official Analytical Chemist. (2016). Official methods of analysis. Maryland: Association of Official Agricultural Chemists.
Welz B, Sperling M. Atomic absorption spectrometry. Weinheim: Wiley-VCH; 1999.
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de Análise de Solo. Rio de Janeiro: EMBRAPA-CNPS; 1997.
Langmuir I. The constitution and fundamental properties of solids and liquids. J Am Chem Soc. 1916;38(11):2221–95. https://doi.org/10.1021/ja02268a002.
Freundlich HMF. Over the adsorption in solution. J Phys Chem. 1906;657:385–471.
Dubinin MM, Radushkevich LV. The equation of the characteristic curve of the activated charcoal, proceedings of the National Academy of Sciences. USSR physical chemistry section. 1947;55:331–7.
Sips R. Combined form of Langmuir and Freundlich equations. J Chem Phys. 1948;16:490–5.
Tempkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR. 1940;12:327–56.
Schmidt TD, Salton JC, Júnior RPS. Sorption and desorption of thiamethoxam and atrazine in soil under different management systems. Rev bras eng agríc. 2015;19(6):613–8. https://doi.org/10.1590/1807-1929/agriambi.v19n6p613-618.
FAO – Food and Agriculture Organization of the United Nations. Guidelines for soil description. Fourth edition. Rome, 2006. Available at: http://www.fao.org/3/a-a0541e.pdf
Gebremariam SY, Buetel MW, Yonge DR, Flury M, Harsh JB. Adsorption and desorption of Chlorpyrifos to soils and sediments. Rev Environ Contam Toxicol. 2012;215:123–75. https://doi.org/10.1007/978-1-4614-1463-6_3.
Gonçalves AC Jr, Schwantes D, Campagnolo MA, Dragunski DC, Tarley CRT, Silva AKS. Removal of toxic metals using endocarp of açaí berry as biosorbent. Wat Sci Tec. 2018;77(60):1547–57. https://doi.org/10.2166/wst.2018.032.
Balarak D, Mostafapour FK, Azarpira H, Joghataei A. Langmuir, Freundlich, Temkin and Dubinin–radushkevich isotherms studies of equilibrium sorption of Ampicilin unto Montmorillonite nanoparticles. Journal of Pharmaceutical Research International. 2017;20(2):1–9. https://doi.org/10.9734/JPRI/2017/38056.
Sahin R, Tapadia K. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite. Water Sci Technol. 2015;72(12):2262–9. https://doi.org/10.2166/wst.2015.449.
Garcia AV, Viciana MS, Pradas EG, Sánchez MV. Adsorption of chlorpyrifos on Almeria soils. Sci Total Environ. 1992;123–124:541–9. https://doi.org/10.1016/0048-9697(92)90176-S.
Parolo ME, Savini MC, Loewy RM. Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption. J Environ Manag. 2017;196:316–22. https://doi.org/10.1016/j.jenvman.2017.03.018.
Fink JR, Inda AV, Tiecher T, Barrón V. Iron oxides and organic matter on soil phosphorus availability. Ciênc agrotec. 2016;40(4):369–79. https://doi.org/10.1590/1413-70542016404023016.
Dannenberg A, Pehkonen SO. Investigation of the heterogeneously catalyzed hydrolysis of Organophosphorus pesticides. J. Agric. Food Chem. 1998;46:325–34. https://doi.org/10.1021/jf970368o.
Yaghi N, Hartikainen H. Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings. Chemosphere. 2013;93(9):1879–86. https://doi.org/10.1016/j.chemosphere.2013.06.059.
Vagi MC, Petsas AS, Kostopoulou MN, Lekkas TD. Adsorption and desorption processes of the organophosphorus pesticides, dimethoate and fenthion, onto three Greek agricultural soils. Int J Environ Anal Chem. 2010;90(3):369–89. https://doi.org/10.1016/10.1080/03067310903194980.
Alfonso L-F, Germán GV, Carmen PCM, Hossein G. Adsorption of organophosphorus pesticides in tropical soils: the case of karst landscape of northwestern Yucatan. Chemosphere. 2017;166:292–9. https://doi.org/10.1016/j.chemosphere.2016.09.109.
Soares DF, Faria AM, Rosa AH. Risk analysis of groundwater contamination by pesticide residue in campo novo do Paracis (MT). Brazil Eng Sanit Ambient. 2017;22(2):277–84. https://doi.org/10.1590/S1413-41522016139118.
Spieszalski WW, Niemczyk HD, Shetlar DJ. Sorption of chlorpyrifos and fonofos on four soils and turfgrass thatch using membrane filters. J Environ Sci Health, Part B. 1994;29(6):1117–36.
Wu J, Laird DA. Interactions of chlorpyrifos with colloidal materials in aqueous systems. J Environ Qual. 2004;33(5):1765–70. https://doi.org/10.2134/jeq2004.1765.