Detection of hepatic maturation by Raman spectroscopy in mesenchymal stromal cells undergoing hepatic differentiation

Hao Wu1, Jennifer H. Ho2,3, Oscar K. Lee4,5,6,7
1Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
2Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
3Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
4Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
5Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
6Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
7Taipei City Hospital, Taipei, Taiwan

Tóm tắt

Abstract Introduction Mesenchymal stromal cells (MSCs) are well known for their application potential in tissue engineering. We previously reported that MSCs are able to differentiate into hepatocytes in vitro. However, conventional methods for estimating the maturation of hepatic differentiation require relatively large amounts of cell samples. Raman spectroscopy (RS), a photonic tool for acquisition of cell spectra by inelastic scattering, has been recently used as a label-free single-cell detector for biological applications including phenotypic changes and differentiation of cells and diagnosis. In this study, RS is used to real-time monitor the maturation of hepatic differentiation in live MSCs. Methods The MSCs were cultured on the type I collagen pre-coating substrate and differentiated into hepatocytes in vitro using a two-step protocol. The Raman spectra at different time points are acquired in the range 400–3000 cm–1and analyzed by quantification methods and principle component analysis during hepatic differentiation from the MSCs. Results The intensity of the broad band in the range 2800–3000 cm–1 reflects the amount of glycogen within lipochrome in differentiated hepatocytes. A high correlation coefficient between the glycogen amount and hepatic maturation was exhibited. Moreover, principle component analysis of the Raman spectra from 400 to 3000 cm–1 indicated that MSC-derived hepatocytes were close to the primary hepatocytes and were distinct from the undifferentiated MSCs. Conclusions In summary, RS can serve as a rapid, non-invasive, real-time and label-free biosensor and reflects changes in live cell components during hepatic differentiation. The use of RS may thus facilitate the detection of hepatic differentiation and maturation in stem cells. Such an approach may substantially improve the feasibility as well as shorten the time required compared to the conventional molecular biology methods.

Từ khóa


Tài liệu tham khảo

Raman CV. A new radiation. Indian J Phys. 1928;2:387–98.

Das RS, Agrawal YK. Raman spectroscopy: recent advancements, techniques and applications. Vib Spectros. 2011;57(2):163–76. doi:10.1016/j.vibspec.2011.08.003.

Chan JW, Lieu DK. Label-free biochemical characterization of stem cells using vibrational spectroscopy. J Biophotonics. 2009;2(11):656–68. doi:10.1002/jbio.200910041.

Hawi SR, Campbell WB, Kajdacsy-Balla A, Murphy R, Adar F, Nithipatikom K. Characterization of normal and malignant human hepatocytes by Raman microspectroscopy. Cancer Lett. 1996;110(1-2):35–40.

Huang Z, McWilliams A, Lam S, English J, McLean DI, Lui H, et al. Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues. Int J Oncol. 2003;23(3):649–55.

Galler K, Schleser F, Frohlich E, Requardt RP, Kortgen A, Bauer M, et al. Exploitation of the hepatic stellate cell Raman signature for their detection in native tissue samples. Integr Biol. 2014;6(10):946–56. doi:10.1039/c4ib00130c.

Guo J, Cai W, Du B, Qian M, Sun Z. Raman spectroscopic investigation on the interaction of malignant hepatocytes with doxorubicin. Biophys Chem. 2009;140(1-3):57–61. doi:10.1016/j.bpc.2008.11.005.

Majzner K, Kochan K, Kachamakova-Trojanowska N, Maslak E, Chlopicki S, Baranska M. Raman imaging providing insights into chemical composition of lipid droplets of different size and origin: in hepatocytes and endothelium. Anal Chem. 2014;86(13):6666–74. doi:10.1021/ac501395g.

Brauchle E, Thude S, Brucker SY, Schenke-Layland K. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci Rep. 2014;4:4698. doi:10.1038/srep04698.

Hung PS, Kuo YC, Chen HG, Chiang HH, Lee OK. Detection of osteogenic differentiation by differential mineralized matrix production in mesenchymal stromal cells by Raman spectroscopy. PLoS One. 2013;8(5):e65438. doi:10.1371/journal.pone.0065438.

Atala A. Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin Biol Ther. 2005;5(7):879–92. doi:10.1517/14712598.5.7.879.

Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science (New York, NY). 2002;295(5557):1009–14. doi:10.1126/science.1069210.

Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther. 2003;5(1):32–45.

Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15(11):1009–16. doi:10.1038/ni.3002.

Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology (Baltimore, MD). 2004;40(6):1275–84. doi:10.1002/hep.20469.

Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YR, Fang SC, et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology. 2008;134(7):2111–21. doi:10.1053/j.gastro.2008.03.015. 21.e1-3.

Sun K, Xie X, Xie J, Jiao S, Chen X, Zhao X, et al. Cell-based therapy for acute and chronic liver failures: distinct diseases, different choices. Sci Rep. 2014;4:6494. doi:10.1038/srep06494.

Volarevic V, Nurkovic J, Arsenijevic N, Stojkovic M. Concise review: Therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells (Dayton, OH). 2014;32(11):2818–23. doi:10.1002/stem.1818.

Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004;103(5):1662–8. doi:10.1182/blood-2003-09-3070.

Klaunig JE, Goldblatt PJ, Hinton DE, Lipsky MM, Chacko J, Trump BF. Mouse liver cell culture. I. Hepatocyte isolation. In Vitro. 1981;17(10):913–25.

Klaunig JE, Goldblatt PJ, Hinton DE, Lipsky MM, Trump BF. Mouse liver cell culture. II. Primary culture. In Vitro. 1981;17(10):926–34.

Reisner LA, Cao A, Pandya AK. An integrated software system for processing, analyzing, and classifying Raman spectra. Chemometr Intell Lab Syst. 2011;105(1):83–90. doi:10.1016/j.chemolab.2010.09.011.

Brunk UT, Terman A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function12. Free Radic Biol Med. 2002;33(5):611–9. doi:10.1016/S0891-5849(02)00959-0.

Geddes R, Stratton GC. The influence of lysosomes on glycogen metabolism. Biochem J. 1977;163(2):193–200.

Goldfischer S, Bernstein J. Lipofuscin (aging) pigment granules of the newborn human liver. J Cell Biol. 1969;42(1):253–61.

Höhn A, Jung T, Grimm S, Grune T. Lipofuscin-bound iron is a major intracellular source of oxidants: role in senescent cells. Free Radic Biol Med. 2010;48(8):1100–8. doi:10.1016/j.freeradbiomed.2010.01.030.

Koziolowa H, Dziezbicka E. Advances in gastroenterology. Pigment deposits in the liver. I. Lipofuscins. Pol Arch Med Wewn. 1974;52(3):305–10.

Tauchi H, Hananouchi M, Sato T. Accumulation of lipofuscin pigment in human hepatic cells from different races and in different environmental conditions. Mech Ageing Dev. 1980;12(2):183–95.

Ledda M, Barni L, Altieri L, Pannese E. Amount and distribution of lipofuscin in nerve and satellite cells from spinal ganglia of young adult and aged rabbits. J Submicrosc Cytol Pathol. 1999;31(2):237–46.

Terman A, Brunk UT. Lipofuscin. Int J Biochem Cell Biol. 2004;36(8):1400–4. doi:10.1016/j.biocel.2003.08.009.

Bi Y, He Y, Huang JY, Xu L, Tang N, He TC, et al. Induced maturation of hepatic progenitor cells in vitro. Braz J Med Biol Res. 2013;46(7):559–66. doi:10.1590/1414-431x20132455.

Galat A. Study of the Raman scattering and infrared absorption spectra of branched polysaccharides. Acta Biochim Pol. 1980;27(2):135–42.

Kizil R, Irudayaraj J, Seetharaman K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem. 2002;50(14):3912–8.

Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectros Rev. 2007;42(5):493–541. doi:10.1080/05704920701551530.

Aksoy C, Severcan F. Role of vibrational spectroscopy in stem cell research. Spectroscopy 2012;27(3). doi:10.1155/2012/513286.

Abbate S, Conti G, Naggi A. Characterisation of the glycosidic linkage by infrared and Raman spectroscopy in the C-H stretching region: α, α-trehalose and α, α-trehalose-2,3,4,6,6-d10. Carbohydr Res. 1991;210:1–12. doi:10.1016/0008-6215(91)80108-Y.

Kazemnejad S. Hepatic tissue engineering using scaffolds: state of the art. Avicenna Journal of Medical Biotechnology. 2009;1(3):135–45.

Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci U S A. 2003;100(22):12741–6. doi:10.1073/pnas.1735463100.

Li J, Tao R, Wu W, Cao H, Xin J, Li J, et al. 3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes. Stem Cells Dev. 2010;19(9):1427–36. doi:10.1089/scd.2009.0415.

Liu T, Zhang S, Chen X, Li G, Wang Y. Hepatic differentiation of mouse embryonic stem cells in three-dimensional polymer scaffolds. Tissue Eng Part A. 2010;16(4):1115–22. doi:10.1089/ten.TEA.2009.0391.

Meng X, Leslie P, Zhang Y, Dong J. Stem cells in a three-dimensional scaffold environment. SpringerPlus. 2014;3:80. doi:10.1186/2193-1801-3-80.

Wu XB, Tao R. Hepatocyte differentiation of mesenchymal stem cells. Hepatobiliary Pancreat Dis Int. 2012;11(4):360–71.