Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis
Tóm tắt
Ulcerative colitis (UC) as a type of inflammatory bowel disease (IBD), presumed to occur as a consequence of increased immune responses to intestinal microbiota in genetically susceptible individuals. Enterotoxigenic Bacteroides fragilis (ETBF) strains are important intestinal bacteria that can be involved in IBD. The aim of this study was to design a quantitative assay for detection of B. fragilis and ETBF and also to find their association with UC. Ninety-five biopsies were collected from patients with UC (n = 35) and with no IBD (nIBD, n = 60). All the specimens were cultured in Bacteroides bile esculin agar medium. Specific primers and probes were designed for quantitative real-time PCR (QRT-PCR) based on 16S rRNA and bft genes sequences of ETBF. The bft genes were detected in 51.4% of UC samples and 1.6% of nIBD samples, respectively. In UC patients, 37.1% of samples with diarrhea and 11.4% of samples without diarrhea, harbored the bft gene. Mean value of the number of ETBF with bft gene in UC and nIBD samples were 4.46 ן 102 and 1.96, respectively. Likewise these result for 16S rRNA gene in UC and nIBD samples were 2.0 × 103 and 8.4 × 103, respectively. There was no significant association between presence and numbers of 16S rRNA gene of B. fragilis and UC. ETBF was detected more in UC specimens and biopsies of UC patients with diarrhea than in the control group. These data demonstrated that ETBF is associated with development of UC and as a causative agent for the development of diarrhea in these patients.
Tài liệu tham khảo
Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48.
Sartor RB. Genetics and environmental interactions shape the intestinal microbiome to promote inflammatory bowel disease versus mucosal homeostasis. Gastroenterology. 2010;139(6):1816–9.
Lucke K, Miehlke S, Jacobs E, Schuppler M. Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis. J Med Microbiol. 2006;55(5):617–24.
Cummings JH, Macfarlane GT, Macfarlane S. Intestinal bacteria and ulcerative colitis. Curr Issues Intest Microbiol. 2003;4(1):9–20.
Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3(7):390–407.
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–17.
Campieri M, Gionchetti P. Bacteria as the cause of ulcerative colitis. Gut. 2001;48(1):132–5.
Zamani S, Zali MR, Aghdaei HA, Sechi LA, Niegowska M, Caggiu E, Keshavarz R, Mosavari N, Feizabadi MM. Mycobacterium avium subsp. paratuberculosis and associated risk factors for inflammatory bowel disease in Iranian patients. Gut Pathog. 2017;9(1):1.
van Kruiningen HJ. On the use of antibiotics in Crohn’s disease. J Clin Gastroenterol. 1995;20:310–6.
Shen BB, Qian JM. Intestinal flora and ulcerative colitis. Pract J Clin Med. 2008;5:002.
Eckburg PBBE, Bernstein CN, Sargent M, Purdom EA, Relman DA. Molecular analysis of the colonic mucosal microbiota in patients with Crohn’s disease. Science. 2005;308:1635–8.
Rehman A, Lepage P, Nolte A, Hellmig S, Schreiber S, et al. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J Med Microbiol. 2010;59:1114–22.
Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol. 2002;68:3401–7.
Gophna U, Sommerfeld K, Gophna S, Doolittle WF, van Zanten SJV. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol. 2006;44:4136–41.
Wells CL, van de Westerlo EM, Jechorek RP, Feltis BA, Wilkins TD, Erlandsen SL. Bacteroides fragilis enterotoxin modulates epithelial permeability and bacterial internalization by HT-29 enterocytes. Gastroenterology. 1996;110(5):1429–37.
Prindiville TP, Sheikh RA, Cohen SH, Tang YJ, Cantrell MC, Silva J Jr. Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. Emerg Infect Dis. 2000;6(2):171.
Rabizadeh S, Rhee KJ, Wu S, Huso D, Gan CM, Golub JE, Sears CL. Enterotoxigenic Bacteroides fragilis: a potential instigator of colitis. Inflamm Bowel Dis. 2007;13(12):1475–83.
Sack RB, Myers LL, Almeido-Hill J, Shoop DS, Bradbury WC, Reid R, Santosham M. Enterotoxigenic Bacteroides fragilis: epidemiologic studies of its role as a human diarrhoeal pathogen. J Diarrhoeal Dis Res. 1992;10:4–9.
Pathela P, Hasan KZ, Roy E, Alam K, Huq F, Siddique AK, Sack RB. Enterotoxigenic Bacteroides fragilis-associated diarrhea in children 0–2 years of age in rural Bangladesh. J Infect Dis. 2005;191(8):1245–52.
Basset C, Holton J, Bazeos A, Vaira D, Bloom S. Are Helicobacter species and enterotoxigenic Bacteroides fragilis involved in inflammatory bowel disease? Dig Dis Sci. 2004;49(9):1425–32.
Dignass A, Eliakim R, Magro F, Maaser C, Chowers Y, Geboes K, et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 1: definitions and diagnosis. J Crohns Colitis. 2012;6(10):965–90.
Adams PS. Data analysis and reporting. In: Dorak MT, editor. Real-time PCR. New York: Taylor and Francis; 2006. p. 39–61.
Gismera CS, Aladren BS. Inflammatory bowel diseases: a disease(s) of modern times? Is incidence still increasing? World J Gastroenterol. 2008;14(36):5491–8.
Daryani NE, Bashashati M, Aram S, Hashtroudi AA, Shakiba M, Sayyah A, et al. Pattern of relapses in Iranian patients with ulcerative colitis. A prospective study. J Gastrointest Liver Dis. 2006;15(4):355.
Musso G, Gambino R, Cassander M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;63:361–80.
Cáceres M, Zhang G, Weintraub A, Nord CE. Prevalence and antimicrobial susceptibility of enterotoxigenic Bacteroides fragilis in children with diarrhea in Nicaragua. Anaerobe. 2000;6:143–8.
Scotto d’Abusco AS, M Del Grosso and M Pantosti. Characterization of the enterotoxin gene of Bacteroides fragilis strains from different human sources, abstr. 3.106, p. 56. In: Abstracts of the 2nd world congress on anaerobic bacteria and infections. Boston: International Society of Anaerobic Bacteria; 1998.
Sears CL, Islam S, Saha A, Arjumand M, Alam NH, Faruque AS, et al. Association of enterotoxigenic Bacteroides fragilis infection with inflammatory diarrhea. Clin Infect Dis. 2008;47:797–803.
Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015;60:208–15.
Rhee KJ, Wu S, Wu X, Huso DL, Karim B, Franco AA, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708–18.
Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Investig. 2014;124:4166–72.
Herrinton LJ, Liu L, Levin TR, Allison JE, Lewis JD, Velayos F. Incidence and mortality of colorectal adenocarcinoma in persons with inflammatory bowel disease from 1998 to 2010. Gastroenterology. 2012;143:382–9.
Gillen CD, Walmsley RS, Prior P, Andrews HA, Allan RN. Ulcerative colitis and Crohn’s disease: a comparison of the colorectal cancer risk in extensive colitis. Gut. 1994;35:1590–2.
Hartley MG, Hudson MJ, Swarbrick ET, Hill MJ, Gent AE, Hellier MD, Grace RH. The rectal mucosa-associated microflora in patients with ulcerative colitis. J Med Microbiol. 1992;36:96–103.
Kato N, Liu CX, Kato H, Watanabe K, Tanaka Y, Yamamoto T, Suzuki K, Ueno K. A new subtype of the metalloprotease toxin gene and the incidence of the three bft subtypes among Bacteroides fragilis isolates in Japan. FEMS Microbiol Lett. 2000;182(1):171–6.
Avila-Campos MJ, Liu C, Song Y, Rowlinson MC, Finegold SM. Determination of bft gene subtypes in Bacteroides fragilis clinical isolates. J Clin Microbiol. 2007;45(4):1336–8.
Akhi MT, Seifi SJ, Asgharzadeh M, Rezaee MA, Oskuei SA, Pirzadeh T, Memar MY, Alizadeh N, Sofla HS. Role of Enterotoxigenic Bacteroides fragilis in Children Less Than 5 Years of Age With Diarrhea in Tabriz, Iran. Jundishapur journal of microbiology. 2016;9(6):e32163.
Zhou Y, Zhi F. Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis. Biomed Res Int. 2016;24:2016.
Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, Kamada N, Sakuraba A, Yajima T, Higuchi H, Inoue N. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008;298(5):463–72.