Detection of a historic reservoir of bedaquiline/clofazimine resistance-associated variants in Mycobacterium tuberculosis
Tóm tắt
Từ khóa
Tài liệu tham khảo
World Health Organization. Global tuberculosis report 2022. (WHO, 2022).
Cegielski JP, et al. Multidrug-resistant Tuberculosis treatment outcomes in relation to treatment and initial versus acquired second-line drug resistance. Clin Infect Dis. 2016;62:418–30. https://doi.org/10.1093/cid/civ910.
World Health Organization. Global tuberculosis report 2019. (2019).
Andries K, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307:223–7. https://doi.org/10.1126/science.1106753.
Diacon AH, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med. 2014;371:723–32. https://doi.org/10.1056/NEJMoa1313865.
Food and Drug Administration. SIRTURO approval letter. Retrieved Jan 15, 2024, from https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2012/204384orig1s000ltr.pdf.
Borisov SE. et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J 2017;49. https://doi.org/10.1183/13993003.00387-2017
Guglielmetti L. et al. Long-term outcome and safety of prolonged bedaquiline treatment for multidrug-resistant tuberculosis. Eur Respir J 2017;49. https://doi.org/10.1183/13993003.01799-2016
Olayanju O. et al. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur Respir J 2018;51. https://doi.org/10.1183/13993003.00544-2018
Ndjeka N. et al. High treatment success rate for multidrug-resistant and extensively drug-resistant tuberculosis using a bedaquiline-containing treatment regimen. Eur Respir J 2018;52. https://doi.org/10.1183/13993003.01528-2018
World Health Organization. Module 4: treatment - drug-resistant tuberculosis treatment, 2022 update. (2022).
Conradie F, et al. Bedaquiline-Pretomanid-Linezolid regimens for drug-resistant Tuberculosis. N Engl J Med. 2022;387:810–23. https://doi.org/10.1056/NEJMoa2119430.
Berry C, et al. TB-PRACTECAL: study protocol for a randomised, controlled, open-label, phase II-III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrug-resistant tuberculosis. Trials. 2022;23:484. https://doi.org/10.1186/s13063-022-06331-8.
Paton NI, Cousins C, Suresh C. Treatment strategy for rifampin-susceptible tuberculosis. Reply N Engl J Med. 2023;388:2298. https://doi.org/10.1056/NEJMc2304776.
Manson AL, et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat Genet. 2017;49:395–402. https://doi.org/10.1038/ng.3767.
Cohen KA, et al. Evolution of extensively drug-resistant Tuberculosis over four decades: Whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med. 2015;12:e1001880. https://doi.org/10.1371/journal.pmed.1001880.
Eldholm V, Balloux F. Antimicrobial resistance in Mycobacterium tuberculosis: the odd one out. Trends Microbiol. 2016;24:637–48. https://doi.org/10.1016/j.tim.2016.03.007.
Huitric E, et al. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother. 2010;54:1022–8. https://doi.org/10.1128/AAC.01611-09.
Almeida D, et al. Mutations in pepQ confer low-level resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2016;60:4590–9. https://doi.org/10.1128/AAC.00753-16.
Andries K, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS ONE. 2014;9:e102135. https://doi.org/10.1371/journal.pone.0102135.
Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58:2979–81. https://doi.org/10.1128/AAC.00037-14.
Poulton NC, Azadian ZA, DeJesus MA, Rock JM. Mutations in rv0678 confer low-level resistance to Benzothiazinone DprE1 inhibitors in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2022;66:e0090422. https://doi.org/10.1128/aac.00904-22.
Vargas R Jr, et al. Role of epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine resistance in Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother. 2021;65:e0116421. https://doi.org/10.1128/AAC.01164-21.
Bloemberg GV, et al. Acquired resistance to Bedaquiline and Delamanid in therapy for Tuberculosis. N Engl J Med. 2015;373:1986–8. https://doi.org/10.1056/NEJMc1505196.
Xu J. et al. Primary Clofazimine and Bedaquiline resistance among isolates from patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother 2017;61. https://doi.org/10.1128/AAC.00239-17
Zimenkov DV, et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother. 2017;72:1901–6. https://doi.org/10.1093/jac/dkx094.
de Vos M, et al. Bedaquiline microheteroresistance after cessation of Tuberculosis treatment. N Engl J Med. 2019;380:2178–80. https://doi.org/10.1056/NEJMc1815121.
Ghodousi A. et al. Acquisition of cross-resistance to Bedaquiline and Clofazimine following treatment for Tuberculosis in Pakistan. Antimicrob Agents Chemother 2019;63. https://doi.org/10.1128/AAC.00915-19
Polsfuss S, et al. Emergence of low-level delamanid and Bedaquiline resistance during extremely drug-resistant tuberculosis treatment. Clin Infect Dis. 2019;69:1229–31. https://doi.org/10.1093/cid/ciz074.
Mokrousov I, Akhmedova G, Polev D, Molchanov V, Vyazovaya A. Acquisition of bedaquiline resistance by extensively drug-resistant Mycobacterium tuberculosis strain of Central Asian outbreak clade. Clin Microbiol Infect. 2019;25:1295–7. https://doi.org/10.1016/j.cmi.2019.06.014.
Kadura S, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother. 2020;75:2031–43. https://doi.org/10.1093/jac/dkaa136.
Roberts LW. et al. Repeated evolution of bedaquiline resistance in Mycobacterium tuberculosis is driven by truncation of mmpR5. bioRxiv, 2022.2012.2008.519610. 2022. https://doi.org/10.1101/2022.12.08.519610
Sonnenkalb L, et al. Bedaquiline and clofazimine resistance in Mycobacterium tuberculosis: an in-vitro and in-silico data analysis. Lancet Microbe. 2023;4:e358–68. https://doi.org/10.1016/S2666-5247(23)00002-2.
Ismail N, et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe. 2021;2:E604–16. https://doi.org/10.1016/S2666-5247(21)00175-0.
World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. 2023. https://iris.who.int/handle/10665/374061. Accessed 31 Jan 2024.
World Health Organization. Technical report on critical concentrations for TB drug susceptibility testing of medicines used in the treatment of drug-resistant TB. 2018.
Nimmo C. et al. Bedaquiline resistance in drug-resistant tuberculosis HIV co-infected patients. Eur Respir J 2020;55. https://doi.org/10.1183/13993003.02383-2019
Martinez E, et al. Mutations associated with in vitro resistance to Bedaquiline in Mycobacterium tuberculosis isolates in Australia. Tuberculosis (Edinb). 2018;111:31–4. https://doi.org/10.1016/j.tube.2018.04.007.
Timm J, et al. Baseline and acquired resistance to bedaquiline, linezolid and pretomanid, and impact on treatment outcomes in four tuberculosis clinical trials containing pretomanid. PLOS Glob Public Health. 2023;3:e0002283. https://doi.org/10.1371/journal.pgph.0002283.
Villellas C, et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J Antimicrob Chemother. 2017;72:684–90. https://doi.org/10.1093/jac/dkw502.
Merker M, et al. Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex. Genome Med. 2020;12:27. https://doi.org/10.1186/s13073-020-00726-5.
Coll F, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun. 2014;5:4812. https://doi.org/10.1038/ncomms5812.
Sobkowiak B, et al. Identifying mixed Mycobacterium tuberculosis infections from whole genome sequence data. BMC Genomics. 2018;19:613. https://doi.org/10.1186/s12864-018-4988-z.
Brynildsrud OB, et al. Global expansion of Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation. Sci Adv. 2018;4:eaat5869.
Bradley P, den Bakker HC, Rocha EPC, McVean G, Iqbal Z. Ultrafast search of all deposited bacterial and viral genomic data. Nat Biotechnol. 2019;37:152–9. https://doi.org/10.1038/s41587-018-0010-1.
Merker M, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. 2015;47:242–9. https://doi.org/10.1038/ng.3195.
Luo T, et al. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci U S A. 2015;112:8136–41. https://doi.org/10.1073/pnas.1424063112.
Norheim G, et al. Tuberculosis outbreak in an educational institution in Norway. J Clin Microbiol. 2017;55:1327–33. https://doi.org/10.1128/JCM.01152-16.
Kay GL, et al. Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat Commun. 2015;6:6717. https://doi.org/10.1038/ncomms7717.
Nimmo C, et al. Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis. Lancet Microbe. 2020;1:e165–74. https://doi.org/10.1016/S2666-5247(20)30031-8.
Nimmo C, et al. Dynamics of within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment. EBioMedicine. 2020;55:102747. https://doi.org/10.1016/j.ebiom.2020.102747.
Nimmo C, et al. Whole genome sequencing Mycobacterium tuberculosis directly from sputum identifies more genetic diversity than sequencing from culture. BMC Genomics. 2019;20:389. https://doi.org/10.1186/s12864-019-5782-2.
Dheda K, et al. Outcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: a prospective cohort study. Lancet Respir Med. 2017;5:269–81. https://doi.org/10.1016/S2213-2600(16)30433-7.
Streicher EM, et al. Molecular epidemiological interpretation of the epidemic of extensively drug-resistant Tuberculosis in South Africa. J Clin Microbiol. 2015;53:3650–3. https://doi.org/10.1128/JCM.01414-15.
Guerra-Assuncao JA. et al. Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. Elife 2015;4. https://doi.org/10.7554/eLife.05166
Grandjean L, et al. Transmission of multidrug-resistant and drug-susceptible Tuberculosis within households: a prospective cohort study. PLoS Med. 2015;12:e1001843. https://doi.org/10.1371/journal.pmed.1001843. discussion e1001843.
Grandjean L, et al. Convergent evolution and topologically disruptive polymorphisms among multidrug-resistant tuberculosis in Peru. PLoS ONE. 2017;12:e0189838. https://doi.org/10.1371/journal.pone.0189838.
Ismail N, Omar SV, Ismail NA, Peters RPH. Collated data of mutation frequencies and associated genetic variants of bedaquiline, clofazimine and linezolid resistance in Mycobacterium tuberculosis. Data Brief. 2018;20:1975–83. https://doi.org/10.1016/j.dib.2018.09.057.
Ghajavand H. et al. High prevalence of Bedaquiline resistance in treatment-naive tuberculosis patients and Verapamil effectiveness. Antimicrob Agents Chemother 2019;63. https://doi.org/10.1128/AAC.02530-18
Fowler PW. 2017 pygsi v.1.0.0: a Python class to interrogate BIGISI. 2018. https://doi.org/10.5281/zenodo.1407085.
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013. arXiv:1303.3997
Van der Auwera GA, et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;11(10):11–111033. https://doi.org/10.1002/0471250953.bi1110s43.
Okonechnikov K, Conesa A, Garcia-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–4. https://doi.org/10.1093/bioinformatics/btv566.
Hariguchi N. et al. OPC-167832, a novel carbostyril derivative with potent antituberculosis activity as a DprE1 Inhibitor. Antimicrob Agents Chemother 2020;64. https://doi.org/10.1128/AAC.02020-19
Phelan JE, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med. 2019;11:41. https://doi.org/10.1186/s13073-019-0650-x.
Coll F, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015;7:51. https://doi.org/10.1186/s13073-015-0164-0.
The Cryptic Consortium. A data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibiotics. PLoS Biol. 2022;20:e3001721. https://doi.org/10.1371/journal.pbio.3001721.
Page AJ, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016;2:e000056. https://doi.org/10.1099/mgen.0.000056.
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5. https://doi.org/10.1093/bioinformatics/btz305.
Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 2018;46:e134. https://doi.org/10.1093/nar/gky783.
Menardo F, et al. Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC Bioinformatics. 2018;19:164. https://doi.org/10.1186/s12859-018-2164-8.
Bouckaert R, et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019;15:e1006650. https://doi.org/10.1371/journal.pcbi.1006650.
Bouckaert RR, Drummond AJ. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol Biol. 2017;17:42. https://doi.org/10.1186/s12862-017-0890-6.
Baele G, et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol. 2012;29:2157–67. https://doi.org/10.1093/molbev/mss084.
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8. https://doi.org/10.1093/bioinformatics/bty633.
Yu GC, Smith DK, Zhu HC, Guan Y, Lam TTY. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36. https://doi.org/10.1111/2041-210x.12628.
O’Neill MB, et al. Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Mol Ecol. 2019;28:3241–56. https://doi.org/10.1111/mec.15120.
Rutaihwa LK, et al. Multiple Introductions of Mycobacterium tuberculosis lineage 2-Beijing into Africa over centuries. Front Ecol Evol. 2019;7:ARTN 112. https://doi.org/10.3389/fevo.2019.00112.
Bradley P, et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun. 2015;6:10063. https://doi.org/10.1038/ncomms10063.
Menardo F, Duchene S, Brites D, Gagneux S. The molecular clock of Mycobacterium tuberculosis. PLoS Pathog. 2019;15:e1008067. https://doi.org/10.1371/journal.ppat.1008067.
Ismail N, Peters RPH, Ismail NA, Omar SV. Clofazimine exposure in vitro selects efflux pump mutants and Bedaquiline resistance. Antimicrob Agents Chemother 2019;63. https://doi.org/10.1128/AAC.02141-18
Andres S, et al. Bedaquiline-resistant tuberculosis: dark clouds on the horizon. Am J Respir Crit Care Med. 2020;201:1564–8. https://doi.org/10.1164/rccm.201909-1819LE.
The Cryptic Consortium. Epidemiological cutoff values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M. tuberculosis. Eur Respir J 2022;2200239. https://doi.org/10.1183/13993003.00239-2022
Rancoita PMV. et al. Validating a 14-drug microtiter plate containing Bedaquiline and Delamanid for large-scale research susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2018;62. https://doi.org/10.1128/AAC.00344-18
Beckert P, et al. MDR M. tuberculosis outbreak clone in Eswatini missed by Xpert has elevated bedaquiline resistance dated to the pre-treatment era. Genome Med. 2020;12:104. https://doi.org/10.1186/s13073-020-00793-8.
Loiseau C, et al. An African origin for Mycobacterium bovis. Evol Med Public Health. 2020;2020:49–59. https://doi.org/10.1093/emph/eoaa005.
Bateson A, et al. Ancient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanid. J Antimicrob Chemother. 2022;77:1685–93. https://doi.org/10.1093/jac/dkac070.
D’Costa VM, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–61. https://doi.org/10.1038/nature10388.
Rifat D, et al. Mutations in fbiD (Rv2983) as a novel determinant of resistance to pretomanid and delamanid in Mycobacterium tuberculosis. Antimicrob Agents Ch. 2021;65:ARTN e01948–20. https://doi.org/10.1128/AAC.01948-20.
Koser CU, Maurer FP. Minimum inhibitory concentrations and sequencing data have to be analysed in more detail to set provisional epidemiological cut-off values for Mycobacterium tuberculosis complex. Eur Respir J 2023;61. https://doi.org/10.1183/13993003.02397-2022
Kahlmeter G, Turnidge J. The determination of epidemiological cut-off values requires a systematic and joint approach based on quality controlled, non-truncated minimum inhibitory concentration series. Eur Respir J 2023;61. https://doi.org/10.1183/13993003.02259-2022
World Health Organization. Optimized broth microdilution plate methodology for drug susceptibility testing of Mycobacterium tuberculosis complex. 2022. https://iris.who.int/handle/10665/353066.
Liu Y, et al. Reduced susceptibility of Mycobacterium tuberculosis to Bedaquiline during antituberculosis treatment and its correlation with clinical outcomes in China. Clin Infect Dis. 2021;73:e3391–7. https://doi.org/10.1093/cid/ciaa1002.
Pym AS, et al. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. Eur Respir J. 2016;47:564–74. https://doi.org/10.1183/13993003.00724-2015.