Detection of Urea Adulteration in Milk Using Near-Infrared Raman Spectroscopy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barbano DM, Clark JL (1989) Infrared milk analysis—challenges for the future. J Dairy Sci 72(6):1627–1636
Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43(5):772–777
Chao K, Qin J, Kim MS, Mo CY (2011) A Raman chemical imaging system for detection of contaminants in food. Proc SPIE 8027:1–10
Cheng Y, Dong Y, Wu J, Yang X, Bai H, Zheng H, Ren D, Zou Y, Li M (2010) Screening melamine adulterant in milk powder with laser Raman spectrometry. J Food Comp Anal 23(2):199–202
Danzer K, Currie LA (1998) Guidelines for calibration in analytical chemistry Part 1. Fundamentals and single component calibration. Pure Appl Chem 70(4):993–1014
Dhawan G, Sumana G, Malhotra BD (2009) Recent developments in urea biosensors. Biochem Eng J 44(1):42–52
El-Abassy RM, Eravuchira PJ, Donfack P, von der Kammer B, Materny A (2010) Fast determination of milk fat content using Raman spectroscopy. Vib Spectrosc 56(1):3–8
El-Abassy RM, Eravuchira PJ, Donfack P, von der Kammer B, Materny A (2012) Direct determination of unsaturation level of milk fat using Raman spectroscopy. Appl Spectrosc 66(5):538–544
Ellis DI, Brewster VL, Dunn WB, Allwood JW, Golovanov AP, Goodacre R (2012) Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chem Soc Rev 41(17):5706–5727
Francis PS, Lewis SW, Lim KF (2002) Analytical methodology for the determination of urea: current practice and future trends. Trends Anal Chem 21(5):389–400
Haaland DM, Thomas EV (1988) Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60(11):1193–1202
Hansen PW (1998) Urea determination in milk using Fourier transform infrared spectroscopy and multivariate calibration. Milchwissenschaft 53(5):251–255
http://cseindia.org/content/adulterated-milk-what-indians-are-drinking
Jehlicka J, Edwards HGM, Culka A (2010) Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications. Phil Trans R Soc A 368(1922):3109–3125
Jenkins DM, Delwiche MJ, DePeters EJ, Bondurant RH (1999) Chemical assay of urea for automated sensing in milk. J Dairy Sci 82(9):1999–2004
Keuleers R, Desseyn HO, Rousseau B, Alsenoy CV (1999) Vibrational analysis of urea. J Phys Chem A 103(24):4621–4630
Khan KM, Krishna H, Majumder SK, Rao KD, Gupta PK (2014) Depth-sensitive Raman spectroscopy combined with optical coherence tomography for layered tissue analysis. J Biophot 7(1–2):77–85
Kohn RA, Kalscheur KF, Russek-Cohen E (2002) Evaluation of models to estimate urinary nitrogen and expected milk urea nitrogen. J Dairy Sci 85(1):227–233
Krishna H, Majumder SK, Gupta PK (2013) Range-independent background subtraction algorithm for recovery of Raman spectra of biological tissue. J Raman Spectrosc 43(12):1884–1894
Kumar H, Kumar A, Kumari P, Jyotirmai S, Tulsani NB (2000) A rapid estimation of urea in adulterated milk using dry reagent strip. Indian J Chem Tech 7:146–147
Levitskaia TG, Bryan SA, Creim JA, Curry TL, Luders T, Thrall KD, James M, Peterson JM (2012) Optical spectroscopy and multivariate analysis for biodosimetry and monitoring of radiation injury to the skin. Drug Develop Res 73(5):255–273
Li-Chan ECY (1996) The applications of Raman spectroscopy in food science. Trends Food Sci Tech 7(11):361–370
Lima JLFC, Matos CD, Vaz MCVF (1998) Flow injection system with potentiometric detection for the determination of urea content in milks. J Agric Food Chem 46(4):1386–1389
Lima MJR, Fernandes SMV, Rangel AOSS (2004) Enzymatic determination of urea in milk by sequential injection with spectrophotometric and conductometric detection. J Agric Food Chem 52(23):6887–6890
Luzzana M, Giardino R (1999) Urea determination in milk by a differential pH technique. Lait 79(2):261–267
McGoverin CM, Clark ASS, Holroyd SE, Gordon KC (2010) Raman spectroscopic quantification of milk powder constituents. Anal Chim Acta 673(1):26–32
Mishra GK, Mishra RK, Bhand S (2010) Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor. Biosens Bioelectron 26(4):1560–1564
Paradkar MM, Singhal RS, Kulkarni PR (2000) An approach to the detection of synthetic milk in dairy milk: 1. Detection of urea. Int J Dairy Technol 53(3):87–91
Qin J, Chao K, Kim MS (2013) Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging. Food Chem 138(2–3):998–1007
Qin J, Chao K, Kim MS, Lee H, Peng Y (2014) Development of a Raman chemical imaging detection method for authenticating skim milk powder. Food Meas. doi: 10.1007/s11694-014-9172-9
Reid LM, O′Donnell CP, Downey G (2006) Recent technological advances for the determination of food authenticity. Trends Food Sci Tech 17(7):344–353
Sadat A, Mustajab P, Khan IA (2006) Determining the adulteration of natural milk with synthetic milk using ac conductance measurement. J Food Eng 77(3):472–477
Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least square procedures. Anal Chem 36(8):1627–1639
Schulz H (2008) In: Sun DW (ed) Modern techniques for food authentication, 1st edn. New York, Elsevier
Sharma R, Rajput YS, Kaur S, Tomar SK (2008) A method for estimation of urea using ammonia electrode and its applicability to milk samples. J Dairy Res 75(4):466–470
Trivedi UB, Lakshminarayana D, Kothari IL, Patel NG, Kapse HN, Makhija KK, Patel PB, Panchal CJ (2009) Potentiometric biosensor for urea determination in milk. Sensor Actuat B-Chem 140(1):260–266