Phát hiện các tác nhân ô nhiễm vi sinh vật tiềm năng và độc tố của chúng trong các sản phẩm sữa lên men: Một bài tổng quan toàn diện

Food Analytical Methods - Tập 15 - Trang 1880-1898 - 2022
Alaa S. El-Sayed1, Hany Ibrahim2, Mohamed A. Farag3
1Faculty of Medicine, Al-Azhar University, Cairo, Egypt.
2Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
3Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt

Tóm tắt

Các sản phẩm sữa lên men là những thành phần chính trong chế độ ăn hàng ngày trên toàn thế giới nhờ vào những đặc tính cảm quan mong muốn, thời gian bảo quản lâu dài và giá trị dinh dưỡng cao. Probiotics thường được thêm vào các sản phẩm này vì lợi ích về sức khỏe và công nghệ của chúng. Tuy nhiên, sự an toàn và khả năng ô nhiễm của các sản phẩm sữa lên men trong quá trình sản xuất có thể gây ra những tác động tiêu cực đáng kể đối với sức khỏe và kinh tế. Các vi sinh vật gây bệnh và độc tố từ nhiều nguồn khác nhau trong các sản phẩm sữa lên men góp phần vào các vụ bùng phát và các trường hợp ngộ độc. Mặc dù những lợi ích về sức khỏe và dinh dưỡng của các sản phẩm sữa lên men đã được nghiên cứu rộng rãi, thì các nguy cơ an toàn do ô nhiễm lại chưa được khám phá nhiều. Để phòng ngừa, việc xác định và đánh giá chính xác hệ vi sinh vật liên quan hoặc độc tố của chúng là rất quan trọng. Cần nhấn mạnh tầm quan trọng của việc phát hiện không chỉ các vi sinh vật gây bệnh mà còn cả các sản phẩm chuyển hóa độc tố của chúng để có thể phòng ngừa hoặc phát hiện được các vụ bùng phát tiềm tàng trước khi chúng gây ra ảnh hưởng xấu đến sức khỏe con người. Trong bối cảnh này, bài tổng quan này tập trung mô tả các kỹ thuật được thiết kế để phát hiện các tác nhân ô nhiễm tiềm ẩn; đồng thời, những ưu điểm và nhược điểm của các kỹ thuật này cũng đã được tóm tắt. Hơn nữa, bài tổng quan này tổng hợp các phương pháp phân tích mới nhất và hiệu quả nhất để phát hiện các mối nguy vi sinh vật và độc tố trong các sản phẩm sữa lên men khác nhau từ nhiều nguồn khác nhau. Những tác nhân gây ra việc ô nhiễm cũng được thảo luận ngắn gọn nhằm hỗ trợ cho các biện pháp phòng ngừa trong tương lai, cũng như các phương pháp và công nghệ kiểm tra được áp dụng. Cách tiếp cận này cho phép làm sáng tỏ những chiến lược tốt nhất để kiểm soát ô nhiễm trong các quy trình sản xuất các sản phẩm sữa lên men.

Từ khóa


Tài liệu tham khảo

Abera BD, Falco A, Ibba P, Cantarella G, Petti L, Lugli P (2019) Development of flexible dispense-printed electrochemical immunosensor for aflatoxin M1 detection in milk. Sensors 19(18):3912 Adımcılar V, Öztekin N, Erim FB (2018) A direct and sensitive analysis method for biogenic amines in dairy products by capillary electrophoresis coupled with contactless conductivity detection. Food Anal Methods 11(5):1374–1379 Akinyemi MO, Ayeni KI, Ogunremi OR, Adeleke RA, Oguntoyinbo FA, Warth B, Ezekiel CN (2021) A review of microbes and chemical contaminants in dairy products in sub-Saharan Africa. Compr Rev Food Sci Food Saf 20(2):1188–1220 Al-Ashmawy MA, Sallam KI, Abd-Elghany SM, Elhadidy M, Tamura T (2016) Prevalence, molecular characterization, and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus isolated from milk and dairy products. Foodborne Pathog Dis 13(3):156–162 Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA (2020) Application of biosensors for detection of pathogenic food bacteria: a review. Biosensors 10(6):58 Aly SS (2016) Studying the migration of plasticizers from plastic packaging to local processed cheese. Sciences 6(04):957–963 Aly MM, Al-Seeni MN, Qusti SY, El-Sawi NM (2010) Mineral content and microbiological examination of some white cheese in Jeddah, Saudi Arabia during summer 2008. Food Chem Toxicol 48(11):3031–3034 Anfossi L, Calderara M, Baggiani C, Giovannoli C, Arletti E, Giraudi G (2008) Development and application of solvent-free extraction for the detection of aflatoxin M1 in dairy products by enzyme immunoassay. J Agric Food Chem, 56(6), 1852–1857 Anniballi F, Auricchio B, Woudstra C, Fach P, Fiore A, Skarin H, . . . De Medici D (2013) Multiplex real-time PCR for detecting and typing Clostridium botulinum group III organisms and their mosaic variants. Biosecurity and bioterrorism: biodefense strategy, practice, and science, 11(s1), S207–S214 Artault S, Blind J, Delaval J, Dureuil Y, Gaillard N (2001) Detecting Listeria monocytogenes in food. Int Food Hyg 12(3):23 Atasever MA, Adıgüzel G, Atasever M, Özturan K, Cops NA (2010) Determination of aflatoxin M1 levels in some cheese types consumed in Erzurum-Turkey. Kafkas Univ Vet Fak Derg 16:S87–S91 Aureli P, Di Cunto M, Maffei A, De Chiara G, Franciosa G, Accorinti L, . . . Greco D (2000) An outbreak in Italy of botulism associated with a dessert made with mascarpone cream cheese. Eur J Epidemiol 16(10), 913-918 Balogh K, Kövesi B, Zándoki E, Kulcsár S, Ancsin ,Z, Erdélyi M, . . . Szekeres A (2019) Effect of sterigmatocystin or aflatoxin contaminated feed on lipid peroxidation and glutathione redox system and expression of glutathione redox system regulatory genes in broiler chicken. Antioxidants 8(7), 201. Benevenia R, Arnaboldi S, Dalzini E, Todeschi S, Bornati L, Saetti F, . . . Losio MN (2022) Foodborne botulism survey in Northern Italy from 2013 to 2020: emerging risk or stable situation? Food Control 132 108520 Benkerroum N (2016) Biogenic amines in dairy products: origin, incidence, and control means. Compr Rev Food Sci Food Safety 15(4):801–826 Biancardi A, Piro R, Galaverna G, Dall’Asta C (2013) A simple and reliable liquid chromatography-tandem mass spectrometry method for determination of ochratoxin A in hard cheese. Int J Food Sci Nutr 64(5):632–640 Binetti AG, Capra ML, Álvarez MA, Reinheimer JA (2008) PCR method for detection and identification of Lactobacillus casei/paracasei bacteriophages in dairy products. Int J Food Microbiol 124(2):147–153 Botsaris G, Slana I, Liapi M, Dodd C, Economides C, Rees C, Pavlik I (2010) Rapid detection methods for viable Mycobacterium avium subspecies paratuberculosis in milk and cheese. Int J Food Microbiol 141:S87–S90 Campone L, Piccinelli AL, Celano R, Pagano I, Russo M, Rastrelli L (2016) Rapid and automated analysis of aflatoxin M1 in milk and dairy products by online solid phase extraction coupled to ultra-high-pressure-liquid-chromatography tandem mass spectrometry. J Chromatogr A 1428:212–219 Chavarría G, Granados-Chinchilla F, Alfaro-Cascante M, Molina A (2015) Detection of aflatoxin M1 in milk, cheese and sour cream samples from Costa Rica using enzyme-assisted extraction and HPLC. Food Addit Contam Part B 8(2):128–135 Chen Q, Jun L, Qiu Y, Zhao L (2019) Bioinformatics-based mining of novel gene targets for identification of Cronobacter turicensis using PCR. J Dairy Sci 102(7):6023–6026 Cutter CN (1988) Food safety of farmstead cheese processors in Pennsylvania: an initial needs assessment. Food Prot Trends 37(2):88–98 de Boer E, Beumer RR (1999) Methodology for detection and typing of foodborne microorganisms. Int J Food Microbiol 50(1–2):119–130 Dehkordi FS, Yazdani F, Mozafari J, Valizadeh Y (2014) Virulence factors, serogroups and antimicrobial resistance properties of Escherichia coli strains in fermented dairy products. BMC Res Notes 7(1):1–8 Dunne L, Daly S, Baxter A, Haughey S, O’Kennedy R (2005) Surface plasmon resonance-based immunoassay for the detection of aflatoxin B1 using single-chain antibody fragments. Spectrosc Lett 38(3):229–245 Duquenne M, Fleurot I, Aigle M, Darrigo C, Borezée-Durant E, Derzelle S, . . . Delacroix-Buchet A (2010) Tool for quantification of staphylococcal enterotoxin gene expression in cheese. Appl Environ Microbiol 76 (5) 1367-1374 D'Urso OF, Poltronieri P, Marsigliante S, Storelli C, Hernández M, Rodríguez- Lázaro D (2009) A filtration-based real-time PCR method for the quantitative detection of viable Salmonella enterica and Listeria monocytogenes in food samples. Food Microbiol, 26(3), 311–316 Ec (2003) Commission recommendation of 10 January 2003 concerning a coordinated programme for the official control of foodstuffs for 2003 (2003 .10/. Off J Eur Comm 7:76–81 Farrokh C, Jordan K, Auvray F, Glass K, Oppegaard H, Raynaud, S, ... & Cerf O (2013) Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int J Food Microbiol, 162(2), 190–212 Farag MA, Mesak MA, Saied DB, Ezzelarab NM (2021) Uncovering the dormant food hazards, a review of foodborne microbial spores’ detection and inactivation methods with emphasis on their application in the food industry. Trends Food Sci Technol 107:252–267 Fernández M, Hudson JA, Korpela R, De Los Reyes-Gavilán CG (2015) Impact on Human Health of Microorganisms Present in Fermented Dairy Products: An Overview, BioMed Research International, vol. 2015, Article ID 412714, 13 pages. https://doi.org/10.1155/2015/412714 Ferone M, Gowen A, Fanning S, Scannell AG (2020) Microbial detection and identification methods: bench top assays to omics approaches. Compr Rev Food Sci Food Safety 19(6):3106–3129 Filazi A, Sinan I, Temamogullari F (2010) Survey of the occurrence of aflatoxin M1 in cheeses produced by dairy ewe’s milk in Urfa city Turkey. Ank Üniv Vet Fak Derg 57(3):197–199 Foxman B (2012) Applications of Molecular Tools to Infectious Disease Epidemiology. Molecular Tools and Infectious Disease Epidemiology, 23–39. https://doi.org/10.1016/B978-0-12-374133-2.00003-4 Garcia M, Blanco J, Suarez G (1994) Aflatoxins B 1 and G 1 solubility in standard solutions and stability during cold storage. Mycotoxin Res 10(2):97–100 Gerner-Smidt P (2007) The epidemiology of human listeriosis. Microbes Infect 9:1236–1243 Gianfranceschi MV, Rodriguez-Lazaro D, Hernandez M, González-García P, Comin D, Gattuso A, . . . Prencipe V (2014) European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese. Int J Food Microbiol 184 128-133 Gonfa A, Foster HA, Holzapfel WH (2001) Field survey and literature review on traditional fermented milk products of Ethiopia. Int J Food Microbiol 68(3):173–186 González-Sálamo J, Socas-Rodríguez B, Hernández-Borges J, Rodríguez-Delgado MÁ (2017) Core-shell poly (dopamine) magnetic nanoparticles for the extraction of estrogenic mycotoxins from milk and yogurt prior to LC–MS analysis. Food Chem 215:362–368 Grenier B, Oswald I (2011) Mycotoxin co-contamination of food and feed: meta-analysis of publications describing toxicological interactions. World Mycotoxin J 4(3):285–313 Grout L, Baker MG, French N, Hales S (2020) A review of potential public health impacts associated with the global dairy sector. GeoHealth 4(2):e2019GH000213 Gürbay A, Aydın S, Girgin G, Engin A, Şahin G (2006) Assessment of aflatoxin M1 levels in milk in Ankara Turkey. Food Control 17(1):1–4 Haddad M, Yamani M (2017) Microbiological quality of soft white cheese produced traditionally in Jordan. J Food Process Technol 8(12):706–712 Hadjilouka A, Loizou K, Apostolou T, Dougiakis L, Inglezakis A, Tsaltas D (2020) A Cell-Based Biosensor System for Listeria monocytogenes Detection in Food. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 60, No. 1, p. 49) Hamed AM, Moreno-González D, García-Campaña AM, Gámiz-Gracia L (2017) Determination of aflatoxins in yogurt by dispersive liquid–liquid microextraction and HPLC with photo-induced fluorescence detection. Food Anal Methods 10(2):516–521 Hamed AM, Abdel-Hamid M, Gámiz-Gracia L, García-Campaña AM, Arroyo-Manzanares N (2019) Determination of aflatoxins in plant-based milk and dairy products by dispersive liquid–liquid microextraction and high-performance liquid chromatography with fluorescence detection. Anal Lett 52(2):363–372 Hayes R, Ahmed A, Edge T, Zhang H (2014) Core–shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A 1357:36–52 Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D (2017) Challenges and perspectives of metaproteomic data analysis. J Biotechnol 261:24–36 Hickey CD, Sheehan JJ, Wilkinson MG, Auty MA (2015) Growth and location of bacterial colonies within dairy foods using microscopy techniques: a review. Front microbiol, 6, 99 Hymery N, Vasseur V, Coton M, Mounier J, Jany JL, Barbier G, Coton E (2014) Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Safety 13(4):437–456 Iha MH, Barbosa CB, Favaro RMD, Trucksess MW (2011) Chromatographic method for the determination of aflatoxin M1 in cheese, yogurt, and dairy beverages. J AOAC Int 94(5):1513–1518 Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, . . . Katase M (2019) The use of next generation sequencing for improving food safety: translation into practice. Food microbiol 79 96-115 Kamana O, Ceuppens S, Jacxsens L, Kimonyo A, Uyttendaele M (2014) Microbiological quality and safety assessment of the Rwandan milk and dairy chain. J Food Prot 77(2):299–307 Kandasamy S, Yoo J, Yun J, Kang HB, Seol K-H, Ham J-S (2021) Quantitative analysis of biogenic amines in different cheese varieties obtained from the korean domestic and retail markets. Metabolites 11(1):31 Kanungo L, Bacher G, Bhand S (2014) Flow-based impedimetric immunosensor for aflatoxin analysis in milk products. Appl Biochem Biotechnol 174(3):1157–1165 Karoonuthaisiri N, Charlermroj R, Uawisetwathana U, Luxananil P, Kirtikara K, Gajanandana O (2009) Development of antibody array for simultaneous detection of foodborne pathogens. Biosens Bioelectron 24(6):1641–1648 Khan IT, Nadeem M, Imran M, Ullah R, Ajmal M, Jaspal MH (2019) Antioxidant properties of Milk and dairy products: a comprehensive review of the current knowledge. Lipids Health Dis 18(1):1–13 Kim E, Shon D, Ryu D, Park JW, Hwang H, Kim Y (2000) Occurrence of aflatoxin M1 in Korean dairy products determined by ELISA and HPLC. Food Addit Contam 17(1):59–64 Kokkonen M, Jestoi M, Rizzo A (2005) Determination of selected mycotoxins in mould cheeses with liquid chromatography coupled to tandem with mass spectrometry. Food Addit Contam 22(5):449–456 Kuboka MM, Imungi JK, Njue L, Mutua F, Grace D, Lindahl JF (2019) Occurrence of aflatoxin M1 in raw milk traded in peri-urban Nairobi, and the effect of boiling and fermentation. Infect Ecol Epidemiol 9(1):1625703 Labrie S, Moineau S (2000) Multiplex PCR for detection and identification of lactococcal bacteriophages. Appl Environ Microbiol 66(3):987–994 Layada S, Benouareth D-E, Coucke W, Andjelkovic M (2016) Assessment of antibiotic residues in commercial and farm milk collected in the region of Guelma (Algeria). Int J Food Contam 3(1):1–16 Lee N, Kwon KY, Oh SK, Chang HJ, Chun HS. Choi SW (2014) A multiplex PCR assay for simultaneous detection of Escherichia coli O157: H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food. Foodborne pathogens and disease, 11(7), 574-580 Lim SA, Ahmed UM (2019) Chapter 1: Introduction to Immunosensors, in Immunosensors, pp. 1-20. https://doi.org/10.1039/9781788016162-00001 Linares DM, Martín M, Ladero V, Alvarez MA, Fernández M (2011) Biogenic amines in dairy products. Crit Rev Food Sci Nutr 51(7):691–703 Lindström M, Myllykoski J, Sivelä S, Korkeala H (2010) Clostridium botulinum in cattle and dairy products. Crit Rev Food Sci Nutr 50(4):281–304 Loizzo MR, Menichini F, Picci N, Puoci F, Spizzirri UG, Restuccia D (2013) Technological aspects and analytical determination of biogenic amines in cheese. Trends Food Sci Technol 30(1):38–55 Lomonaco S, Patti R, Knabel SJ, Civera T (2012) Detection of virulence-associated genes and epidemic clone markers in Listeria monocytogenes isolates from PDO Gorgonzola cheese. Int J Food Microbiol 160(1):76–79 Lund F, Filtenborg O, Frisvad J (1995) Associated mycoflora of cheese. Food Microbiol 12:173–180 Macori G, Cotter PD (2018) Novel insights into the microbiology of fermented dairy foods. Curr Opin Biotechnol 49:172–178 Maia DSV, Haubert L, Würfel SDFR, Kroning IS, Cardoso MRDI, Lopes GV . . . da Silva WP (2019) Listeria monocytogenes in sliced cheese and ham from retail markets in southern Brazil. FEMS microbiology letters, 366(22), fnz249 Mao J, Lei S, Liu Y, Xiao D, Fu C, Zhong L, Ouyang H (2015) Quantification of aflatoxin M1 in raw milk by a core-shell column on a conventional HPLC with large volume injection and step gradient elution. Food Control 51:156–162 Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, . . . Pihlanto A (2017) Health benefits of fermented foods: microbiota and beyond. Current opinion in biotechnol 44, 94-102 Marley E, Brown P, Mackie J, Donnelly C, Wilcox J, Pietri A, Macdonald S (2015) Analysis of sterigmatocystin in cereals, animal feed, seeds, beer and cheese by immunoaffinity column clean-up and HPLC and LC-MS/MS quantification. Food Addit Contam: Part A 32(12):2131–2137 Martins MLG, Martins HM (2004) Aflatoxin M1 in yoghurts in Portugal. Int J Food Microbiol 91(3):315–317 McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, vol. 1669 (1259) Medina DAV, Borsatto JVB, Maciel EVS, Lancas FM (2021) Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. TrAC Trends Anal Chem 135:11615 Meshref AM, Moselhy WA, Hassan NE-HY (2014) Heavy metals and trace elements levels in milk and milk products. J Food Meas Charact 8(4):381–388 Mulunda M, Ngoma L, Nyirenda M, Motsei L, & Bakunzi F (2013) A decade of aflatoxin M1 surveillance in milk and dairy products in developing countries (2001–2011): a review. Mycotoxin and Food safety in developing countries, 39–60 Mungai EA, Behravesh CB, Gould LH (2015) Increased outbreaks associated with nonpasteurized milk, United States, 2007–2012. Emerg Infect Dis 21(1):119 Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography–UV–mass spectrometry methodology. J Chromatogr A 1002(1–2):111–136 Nigam PK, Nigam A (2010) Botulinum toxin. Indian J Dermatol 55(1):8 Ogunade I, Jiang Y, Pech Cervantes A (2019) DI/LC–MS/MS-based metabolome analysis of plasma reveals the effects of sequestering agents on the metabolic status of dairy cows challenged with aflatoxin B1. Toxins 11(12):693 Omar SS (2012) Incidence of aflatoxin M1 in human and animal milk in Jordan. J Toxicol Environ Health A 75(22–23):1404–1409 Öngör H, Cetinkaya B, Karahan M, Bulut H (2006) Evaluation of immunomagnetic separation–polymerase chain reaction in direct detection of Brucella abortus and Brucella melitensis from cheese samples. Foodbourne Pathogens & Disease 3(3):245–250 Owusu-Kwarteng J, Akabanda F, Agyei D, Jespersen L (2020) Microbial safety of milk production and fermented dairy products in Africa. Microorganisms 8(5):752 Öztürk Yilmaz S, Altinci A (2018) Incidence of aflatoxin M1 contamination in milk, white cheese, kashar and butter from Sakarya, Turkey. Food Sci Technol 39:190–194 Pal M, Mulu S, Tekle M, Pintoo SV, Prajapati J (2016) Bacterial contamination of dairy products. Beverage and Food World 43(9):40–43 Panseri S, Chiesa LM, Zecconi A, Soncini G, De Noni I (2014) Determination of volatile organic compounds (VOCs) from wrapping films and wrapped PDO Italian cheeses by using HS-SPME and GC/MS. Molecules 19(7):8707–8724 Parker CO, Tothill IE (2009) Development of an electrochemical immunosensor for aflatoxin M1 in milk with focus on matrix interference. Biosens Bioelectron 24(8):2452–2457 Pattono D, Grosso A, Stocco P, Pazzi M, Zeppa G (2013) Survey of the presence of patulin and ochratoxin A in traditional semi-hard cheeses. Food Control 33(1):54–57 Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28(5):848–861 Pourshafie M, Saifie M, Shafiee A, Vahdani P, Aslani M, Salemian J (1998) An outbreak of food-borne botulism associated with contaminated locally-made cheese in Iran. Scand J Infect Dis 30(1):92–94 Principato M, Boyle T, Njoroge J, Jones Jr RL, & O'DONNELL M. (2009). Effect of thermal processing during yogurt production upon the detection of staphylococcal enterotoxin B. J Food Protect (10), 2212-2216 Quigley L, O’Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD (2013) The complex microbiota of raw milk. FEMS Microbiol Rev 37(5):664–698 Rabie, M. A., Elsaidy, S., el-Badawy, A.-A., Siliha, H., & Malcata, F. X. (2011). Biogenic amine contents in selected Egyptian fermented foods as determined by ion-exchange chromatography. J Food Prot 74(4), 681-685 Rico-Munoz E, Samson RA, Houbraken J (2019) Mould spoilage of foods and beverages: using the right methodology. Food Microbiol 81:51–62 Rosen HE, Kimura AC, Crandall J, Poe A, Nash J, Boetzer J, . . . Kasirye O (2020) Foodborne botulism outbreak associated with commercial nacho cheese sauce from a gas station market. Clinical Infectious Diseases, 70(8), 1695-1700 Rusu L, Harja M, Suteu D, Dabija A, Favier L (2016) Pesticide residues contamination of milk and dairy products. A case study: Bacau district area Romania. J Environ Prot Ecol 17:1229–1241 Sahin HZ, Celik M, Kotay S, Kabak B (2016) Aflatoxins in dairy cow feed, raw milk and milk products from Turkey. Food Addit Contam: Part B 9(2):152–158 Saxelin M, Korpela R, Mäyrä-Mäkinen A (2003) Introduction: classifying functional dairy products. Functional dairy products, 1-16. Schirone M, Tofalo R, Visciano P, Corsetti A, Suzzi G (2012) Biogenic amines in Italian Pecorino cheese. Front Microbiol 3:171 Scott PM, Trucksess MW (1997) Application of immunoaffinity columns to mycotoxin analysis. J AOAC Int 80(5):941–950 Shuib NS, Makahleh A, Salhimi SM, Saad B (2017) Determination of aflatoxin M1 in milk and dairy products using high performance liquid chromatography-fluorescence with post column photochemical derivatization. J Chromatogr A 1510:51–56 Singh A, Datta S, Sachdeva A, Maslanka S, Dykes J, Skinner G, . . . Sharma SK (2015) Evaluation of an enzyme-linked immunosorbent assay (ELISA) kit for the detection of botulinum neurotoxins A, B, E, and F in selected food matrices. Health security, 13(1), 37-44 Sivamaruthi BS, Kesika P, Chaiyasut C (2019) Toxins in fermented foods: prevalence and preventions—a mini review. Toxins 11(1):4 Slimani K, Pirotais Y, Maris P, Abjean J-P, Hurtaud-Pessel D (2018) Liquid chromatography–tandem mass spectrometry method for the analysis of N-(3-aminopropyl)-N-dodecylpropane-1, 3-diamine, a biocidal disinfectant, in dairy products. Food Chem 262:168–177 Soggiu A, Piras C, Mortera SL, Alloggio I, Urbani A, Bonizzi L, Roncada P (2016) Unravelling the effect of clostridia spores and lysozyme on microbiota dynamics in Grana Padano cheese: a metaproteomics approach. J Proteomics 147:21–27 Sohier D, Pavan S, Riou A, Combrisson J, Postollec F (2014) Evolution of microbiological analytical methods for dairy industry needs. Front Microbiol 5:16 Song D, Yang R, Fang S, Liu Y, Long F (2018) A FRET-based dual-color evanescent wave optical fiber aptasensor for simultaneous fluorometric determination of aflatoxin M1 and ochratoxin A. Microchim Acta 185(11):1–10 Suherman S, Janitra AA, Budhiary KNS, Pratiwi WZ, Idris FA (2021, February) Review on hazard analysis and critical control point (HACCP) in the dairy product: Cheese. In IOP Conference Series: Materials Science and Engineering (Vol. 1053, No. 1, p. 012081). IOP Publishing Sulaiman IM, Jacobs E, Simpson S, Kerdahi K (2014) Molecular identification of isolated fungi from unopened containers of Greek yogurt by DNA sequencing of internal transcribed spacer region. Pathogens 3(3):499–509 Sulyok M, Krska R, Schuhmacher R (2010) Application of an LC–MS/MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds. Food Chem 119(1):408–416 Swierczewska M, Liu G, Lee S, Chen X (2012) High-sensitivity nanosensors for biomarker detection. Chem Soc Rev 41(7):2641–2655 Taponen S, McGuinness D, Hiitiö H, Simojoki H, Zadoks R, Pyörälä S (2019) Bovine milk microbiome: a more complex issue than expected. Vet Res 50(1):1–15 Temamogullari F, Kanici A (2014) Aflatoxin M1 in dairy products sold in Şanlıurfa Turkey. J Dairy Sci 97(1):162–165 Torkar KG, Teger SG (2008) The microbiological quality of raw milk after introducing the two day’s milk collecting system. Acta Agriculturae Slovenica 92(1):61–74 Townes JM, Cieslak PR, Hatheway CL, Solomon HM, Holloway JT, Baker MP, . . . Griffin PM (1996) An outbreak of type A botulism associated with a commercial cheese sauce. Annals of internal medicine, 125(7), 558-563 Vahedi M, Nasrolahei M, Sharif M, Mirabi A (2013) Bacteriological study of raw and unexpired pasteurized cow’s milk collected at the dairy farms and super markets in Sari city in 2011. J Prev Med Hyg 54(2):120 Var I, Kabak B (2009) Detection of aflatoxin M1 in milk and dairy products consumed in Adana Turkey. Int J Dairy Technol 62(1):15–18 Vaz A, Cabral Silva AC, Rodrigues P, Venâncio A (2020) Detection methods for aflatoxin M1 in dairy products. Microorganisms 8(2):246 Verraes C, Vlaemynck G, Van Weyenberg S, De Zutter L, Daube G, Sindic M, . . . Herman L (2015) A review of the microbiological hazards of dairy products made from raw milk. Int Dairy J 50 32-44 Veršilovskis A, Van Peteghem C, De Saeger S (2009) Determination of sterigmatocystin in cheese by high-performance liquid chromatography-tandem mass spectrometry. Food Addit Contam 26(1):127–133 Viçosa GN, Le Loir A, Le Loir Y, de Carvalho AF, Nero LA (2013) egc characterization of enterotoxigenic Staphylococcus aureus isolates obtained from raw milk and cheese. Int J Food Microbiol 165(3):227–230 Walsh AM, Crispie F, Daari K, O'Sullivan O, Martin JC, Arthur CT, . . . Cotter PD (2017) Strain-level metagenomic analysis of the fermented dairy beverage nunu highlights potential food safety risks. Appl Environ Microbiol 83 (16) e01144-01117 Wang C, Peng J, Liu DF, Xing KY, Zhang GG, Huang Z, Zhang K-Y (2018) Lateral flow immunoassay integrated with competitive and sandwich models for the detection of aflatoxin M1 and Escherichia coli O157: H7 in milk. J Dairy Sci 101(100):8767–8777 Xie J, Peng T, Zhu A, He J, Chang Q, Hu X, . . . Chen M (2015) Multi-residue analysis of veterinary drugs, pesticides and mycotoxins in dairy products by liquid chromatography–tandem mass spectrometry using low-temperature cleanup and solid phase extraction. J Chromatogr B 1002 19-29 Xu H, Liu W, Gesudu Q, Sun Z, Zhang J, Guo Z, . . . Qing Y (2015) Assessment of the bacterial and fungal diversity in home‐made yoghurts of Xinjiang, China by pyrosequencing. J Sci Food Agric 95 (10) 2007-2015 Yamanaka K, Vestergaard MDC, Tamiya E (2016) Printable electrochemical biosensors: a focus on screen-printed electrodes and their application. Sensors 16(10):1761 Zago M, De Lorentiis A, Carminati D, Comaschi L, Giraffa G (2006) Detection and identification of Lactobacillus delbrueckii subsp. lactis bacteriophages by PCR. J Dairy Res 73(2):146–153 Zamrik MA (2013) Determination of Nitrate and Nitrite Contents of Syrian White Cheese. Pharmacology & Pharmacy, Vol.04No.02, 5. https://doi.org/10.4236/pp.2013.42024 Zeinhom MM, Abdel-Latef GK, Jordan K (2015) The use of multiplex PCR to determine the prevalence of enterotoxigenic Staphylococcus aureus isolated from raw milk, feta cheese, and hand swabs. J Food Sci 80(12):M2932–M2936 Zeinhom MMA, Wang Y, Song Y, Zhu M-J, Lin Y, Du D (2018) A portable smart-phone device for rapid and sensitive detection of E. coli O157: H7 in Yoghurt and Egg. Biosens Bioelectron 99:479–485 Zhang K, Banerjee K (2020) A review: sample preparation and chromatographic technologies for detection of aflatoxins in foods. Toxins 12(9):539 Zhang X, Jiang Y, Huang C, Shen J, Dong X, Chen G, Zhang W (2017) Functionalized nanocomposites with the optimal graphene oxide/Au ratio for amplified immunoassay of E. coli to estimate quality deterioration in dairy product. Biosens Bioelectron 89:913–918 Zhao X, Lin C-W, Wang J, Oh DH (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24(3):297–312 Zhou Y, Xiong S, Zhang K, Feng L, Chen X, Wu Y, . . . Xiong Y (2019) Quantum bead-based fluorescence-linked immunosorbent assay for ultrasensitive detection of aflatoxin M1 in pasteurized milk, yogurt, and milk powder. J Dairy Sci 102 5 3993 3985 Ziyaina M, Rasco B, Sablani SS (2020) Rapid methods of microbial detection in dairy products. Food Control 110:107008