Detection limits of several commercial reverse transcriptase enzymes: impact on the low- and high-abundance transcript levels assessed by quantitative RT-PCR
Tóm tắt
In functional genomics, transcript measurement is of fundamental importance. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays are the most popular technology and depend on the initial molecular step, the reverse transcription (RT). This study provides a complex overview of the influence of elements such as RT systems, amount of background RNA, and transcript abundance on the efficiency of qRT-PCR. Using qRT-PCR, we compared the efficiency of some commonly used RT systems and measured the production of PCR-amplifiable products and the influence of PCR inhibitor contents. The qRT-PCR assays were conducted using the TaqMan system, although we also tested the SYBR Green I chemistry, which is not compatible with all the RT systems. When dealing with low-abundance transcripts, the SuperScript II system generated more detectable molecules than the four other systems tested: Sensiscript, Omniscript, SuperScript III and PowerScript (P < 0.05). However, the Sensiscript and PowerScript systems were more efficient for detecting high-abundance transcripts in the presence of 1 to 2 μg background RNA (P < 0.05). The most striking aspect was the influence of the dilution of the RT reaction on the subsequent PCR. Indeed, some inhibition was released when diluted RT reactions were used for the quantitative PCR measurements. Furthermore, the amount of background RNA in the RT reaction was also a major component influencing a downstream step in qRT-PCR, the PCR reaction. Whereas Sensiscript was less biased, the other systems contained an important source of PCR inhibitors, interfering as much as 70% with the qRT-PCR. This study provides a complex overview of the influence of elements such as RT systems, qRTPCR chemistry, amount of background RNA, and transcript abundance on the efficiency of qRT-PCR. Whereas the most significant influencing factor is the presence of inhibitors in the RT systems, total background RNA is also a major influencing component that affects the PCR reaction. Whenever the aim of a study is to obtain a precise gene expression measurement or to profile the global transcriptome (e.g. microarray), the RT step is critical and should be examined with care.
Tài liệu tham khảo
Livesey FJ: Strategies for microarray analysis of limiting amounts of RNA. Brief Funct Genomic Proteomic 2003, 2: 31-6. 10.1093/bfgp/2.1.31.
Bustin SA: Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology 2002, 29: 23-39. 10.1677/jme.0.0290023.
Bustin SA, Benes V, Nolan T, Pfaffl MW: Quantitative real-time RT-PCR–a perspective. Journal of Molecular Endocrinology 2005, 34: 597-601. 10.1677/jme.1.01755.
Cao W, Epstein C, Liu H, DeLoughery C, Ge N, Lin J, Diao R, Cao H, Long F, Zhang X, Chen Y, Wright PS, Busch S, Wenck M, Wong K, Saltzman AG, Tang Z, Liu L, Zilberstein A: Comparing gene discovery from Affymetrix GeneChip microarrays and Clontech PCR-select cDNA subtraction: a case study. BMC Genomics 2004, 5: 26. 10.1186/1471-2164-5-26.
Bui LC, Leandri RD, Renard JP, Duranthon V: SSH adequacy to preimplantation mammalian development: scarce specific transcripts cloning despite irregular normalisation. BMC Genomics 2005, 6: 155. 10.1186/1471-2164-6-155.
Suslov O, Steindler DA: PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Res 2005, 33: e181. 10.1093/nar/gni176.
Larionov A, Krause A, Miller W: A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 2005, 6: 62. 10.1186/1471-2105-6-62.
Wilson IG: Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 1997,63(10):3741-3751.
Rossen L, Norskov P, Holmstrom K, Rasmussen OF: Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. International Journal of Food Microbiology 1992, 17: 37-45. 10.1016/0168-1605(92)90017-W.
Curry J, McHale C, Smith MT: Low efficiency of the Moloney murine leukemia virus reverse transcriptase during reverse transcription of rare t(8;21) fusion gene transcripts. Biotechniques 2002, 32: 768. 770, 772, 754–5
Tichopad A, Didier A, Pfaffl MW: Inhibition of real-time RT-PCR quantification due to tissue-specific contaminants. Molecular and Cellular Probes 2004, 18: 45-50. 10.1016/j.mcp.2003.09.001.
Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW: Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Analytical Biochemistry 2000, 285: 194-204. 10.1006/abio.2000.4753.
Gal AB, Carnwath JW, Dinnyes A, Herrmann D, Niemann H, Wrenzycki C: Comparison of real-time polymerase chain reaction and end-point polymerase chain reaction for the analysis of gene expression in preimplantation embryos. Reproduction, Fertility, and Development 2006, 18: 365-371. 10.1071/RD05012.
Chandler DP, Wagnon CA, Bolton H Jr: Reverse transcriptase (RT) inhibition of PCR at low concentrations of template and its implications for quantitative RT-PCR. Appl Environ Microbiol 1998,64(2):669-677.
Baltimore D: RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 1970, 226: 1209-1211. 10.1038/2261209a0.
Temin HM, Mizutani S: RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 1970, 226: 1211-3. 10.1038/2261211a0.
Spiegelman S, Burny A, Das MR, Keydar J, Schlom J, Travnicek M, Watson K: DNA-directed DNA polymerase activity in oncogenic RNA viruses. Nature 1970, 227: 1029-31. 10.1038/2271029a0.
Gao G, Orlova M, Georgiadis MM, Hendrickson WA, Goff SP: Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection. Proceedings of the National Academy of Sciences of the United States of America 1997, 94: 407-11. 10.1073/pnas.94.2.407.
Fisher TS, Darden T, Prasad VR: Mutations proximal to the minor groove-binding track of human immunodeficiency virus type 1 reverse transcriptase differentially affect utilization of RNA versus DNA as template. Journal of Virology 2003, 77: 5837-45. 10.1128/JVI.77.10.5837-5845.2003.
Potter J, Zheng W, Lee J: Thermal stability and cDNA synthesis capability of SuperScript III reverse transcriptase. Focus 2003, 25.1: 19-24.
Chen D, Patton JT: Reverse transcriptase adds nontemplated nucleotides to cDNAs during 5'-RACE and primer extension. Biotechniques 2001, 30: 574-80. 582
Nycz CM, Dean CH, Haaland PD, Spargo CA, Walker GT: Quantitative reverse transcription strand displacement amplification: quantitation of nucleic acids using an isothermal amplification technique. Analytical Biochemistry 1998, 259: 226-234. 10.1006/abio.1998.2641.
Nadeau JG, Pitner JB, Linn CP, Schram JL, Dean CH, Nycz CM: Real-time, sequence-specific detection of nucleic acids during strand displacement amplification. Analytical Biochemistry 1999, 276: 177-187. 10.1006/abio.1999.4350.
Sellner LN, Coelen RJ, Mackenzie JS: Reverse transcriptase inhibits Taq polymerase activity. Nucleic Acids Res 1992, 20: 1487-1490. 10.1093/nar/20.7.1487.
Karsai A, Muller S, Platz S, Hauser MT: Evaluation of a homemade SYBR green I reaction mixture for real-time PCR quantification of gene expression. Biotechniques 2002, 32: 790-2. 794–6
Chumakov KM: Reverse transcriptase can inhibit PCR and stimulate primer-dimer formation. PCR Methods Appl 1994,4(1):62-64.
Hietala SK, Crossley BM: Armored RNA as virus surrogate in a real-time reverse transcriptase PCR assay proficiency panel. Journal of Clinical Microbiology 2006, 44: 67-70. 10.1128/JCM.44.1.67-70.2006.
Bustin SA, Nolan T: Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 2004, 15: 155-166.
Max N, Willhauck M, Wolf K, Thilo F, Reinhold U, Pawlita M, Thiel E, Keilholz U: Reliability of PCR-based detection of occult tumour cells: lessons from real-time RT-PCR. Melanoma Research 2001, 11: 371-378. 10.1097/00008390-200108000-00007.
Karrer EE, Lincoln JE, Hogenhout S, Bennett AB, Bostock RM, Martineau B, Lucas WJ, Gilchrist DG, Alexander D: In situ isolation of mRNA from individual plant cells: creation of cell-specific cDNA libraries. Proceedings of the National Academy of Sciences of the United States of America 1995, 92: 3814-3818. 10.1073/pnas.92.9.3814.
National Center for Biotechnology Information (NCBI)[http://www.ncbi.nlm.nih.gov]
Heid CA, Stevens J, Livak KJ, Williams PM: Real time quantitative PCR. Genome Research 1996, 6: 986-994. 10.1101/gr.6.10.986.
Morrison TB, Weis JJ, Wittwer CT: Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 1998, 24: 954-8. 960, 962
Applied Biosystems[http://www.appliedbiosystems.com/support/tutorials/pdf/data_analysis_7700.pdf]
Clontech: Aids to DNA synthesis, repair, amplification and the rest: Powerscript. Nature 2000, 405: 255. 10.1038/35012142.