Detecting diseases in medical prescriptions using data mining methods
Tóm tắt
Từ khóa
Tài liệu tham khảo
Balogh EP, Miller BT, Ball JR. Improving diagnosis in health care. Washington, DC: National Academies Press (US); 2015.
Ahmad P, Qamar S, Rizvi SQA. Techniques of data mining in healthcare: a review. Int J Comput Appl. 2015;120(15):38–50.
Subanya B, Rajalaxmi R. Feature selection using Artificial Bee Colony for cardiovascular disease classification. 2014 International Conference on Electronics and Communication Systems (ICECS). Coimbatore: IEEE; 2014. p. 1–6.
GHazanfari M, Alizadeh S, Teimourpour B. Data mining knowledge discovery. Tehran: Iran University of Science and Technology; 2014.
Rodziewicz TL, Houseman B, Hipskind JE. Medical Error Reduction and Prevention; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499956/.
Van Den Bos J, Rustagi K, Gray T, Halford M, Ziemkiewicz E, Shreve J. The $17.1 billion problem: the annual cost of measurable medical errors. Health Aff. 2011;30(4):596–603.
Schmier JK, Hulme-Lowe CK, Semenova S, Klenk JA, DeLeo PC, Sedlak R, et al. Estimated hospital costs associated with preventable health care-associated infections if health care antiseptic products were unavailable. ClinicoEconomics Outcomes Res. 2016;8:197.
Esfandiari N, Babavalian MR, Moghadam AME, Tabar VK. Knowledge discovery in medicine: current issue and future trend. Expert Syst Appl. 2014;41(9):4434–63.
Kondababu A, Siddhartha V, Kumar BB, Penumutchi B. A comparative study on machine learning based heart disease prediction. In: Materials Today: Proceedings; 2021.
Jeyaranjani J, Rajkumar TD, Kumar TA. Coronary heart disease diagnosis using the efficient ANN model. In: Materials Today: Proceedings; 2021.
Jothi KA, Subburam S, Umadevi V, Hemavathy K. Heart disease prediction system using machine learning. In: Materials Today: Proceedings; 2021.
Pavithra V, Jayalakshmi V. Hybrid feature selection technique for prediction of cardiovascular diseases. In: Materials Today: Proceedings; 2021.
Ramesh G, Madhavi K, Reddy PDK, Somasekar J, Tan J. Improving the accuracy of heart attack risk prediction based on information gain feature selection technique. In: Materials Today: Proceedings; 2021.
Maini E, Venkateswarlu B, Maini B, Marwaha D. Machine learning–based heart disease prediction system for Indian population: an exploratory study done in South India. Med J Armed Forces India. 2021;77(3):302–11.
Kumar S, Sahoo G. Classification of heart disease using naive bayes and genetic algorithm. In: Computational intelligence in data mining-volume 2: Springer; 2015. p. 269–82.
Jain B, Ranawat N, Chittora P, Chakrabarti P, Poddar S. A machine learning perspective: to analyze diabetes. In: Materials Today: Proceedings; 2021.
Kumari S, Kumar D, Mittal M. An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. Int J Cogn Comput Eng. 2021;2:40–6.
Khaleel FA, Al-Bakry AM. Diagnosis of diabetes using machine learning algorithms. In: Materials Today: Proceedings; 2021.
Arumugam K, Naved M, Shinde PP, Leiva-Chauca O, Huaman-Osorio A, Gonzales-Yanac T. Multiple disease prediction using machine learning algorithms. In: Materials Today: Proceedings; 2021.
Wei X, Lu Q, Jin S, Li F, Zhao Q, Cui Y, et al. Developing and validating a prediction model for lymphedema detection in breast cancer survivors. Eur J Oncol Nurs. 2021;54:102023.
Dhanya R, Paul IR, Akula SS, Sivakumar M, Nair JJ. F-test feature selection in stacking ensemble model for breast cancer prediction. Procedia Comput Sci. 2020;171:1561–70.
Onan A. A fuzzy-rough nearest neighbor classifier combined with consistency-based subset evaluation and instance selection for automated diagnosis of breast cancer. Expert Syst Appl. 2015;42(20):6844–52.
Ferdowsy F, Rahi KSA, Jabiullah MI, Habib MT. A machine learning approach for obesity risk prediction. Curr Res Behav Sci. 2021;2:100053.
Pinto A, Ferreira D, Neto C, Abelha A, Machado J. Data mining to predict early stage chronic kidney disease. Procedia Comput Sci. 2020;177:562–7.
Ahsani-Estahbanati E, Doshmangir L, Najafi B, Akbari Sari A, Sergeevich GV. Incidence rate and financial burden of medical errors and policy interventions to address them: a multi-method study protocol. Health Serv Outcomes Res Methodol. 2022;22(2):244–52.
Malladi R, Vempaty P, Pogaku V. Advanced machine learning based approach for prediction of skin cancer. In: Materials Today: Proceedings; 2021.
Dehkordi SK, Sajedi H. Prediction of disease based on prescription using data mining methods. Heal Technol. 2019;9(1):37–44.
Teimouri M, Farzadfar F, Alamdari MS, Hashemi-Meshkini A, Alamdari PA, Rezaei-Darzi E, et al. Detecting diseases in medical prescriptions using data mining tools and combining techniques. Iran J Pharm Res. 2016;15(Suppl):113.
Trasierras AM, Luna JM, Ventura S. Improving the understanding of cancer in a descriptive way: an emerging pattern mining-based approach. Int J Intell Syst. 2022;37(4):2822–48.
Frias M, Moyano JM, Rivero-Juarez A, Luna JM, Camacho Á, Fardoun HM, et al. Classification accuracy of hepatitis C virus infection outcome: data mining approach. J Med Internet Res. 2021;23(2):e18766.
Han J, Pei J, Kamber M. Data mining: concepts and techniques. 3rd ed: The Morgan Kaufmann Series in Data Management Systems; 2011.
Sulzmann JN, F¨urnkranz J. Rule stacking: an approach for compressing an ensemble of rule sets into a single classifier. In: International conference on discovery science. Heidelberg: Springer; 2011. p. 323–34.