Detailed Balance Limit of Efficiency of <i>p-n</i> Junction Solar Cells

Journal of Applied Physics - Tập 32 Số 3 - Trang 510-519 - 1961
W. Shockley1, H. J. Queisser1
1Shockley Transistor, Unit of Clevite Transistor, Palo Alto, California

Tóm tắt

In order to find an upper theoretical limit for the efficiency of p-n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole-electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current-voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

Từ khóa


Tài liệu tham khảo

1954, J. Appl. Phys., 25, 676, 10.1063/1.1721711

1954, J. Appl. Phys., 25, 1422, 10.1063/1.1721579

1955, J. Appl. Phys., 26, 534, 10.1063/1.1722034

1956, J. Appl. Phys., 27, 777, 10.1063/1.1722483

1959, RCA Rev., 20, 373

1960, Proc. I.R.E., 48, 1246

1960, J. Appl. Phys., 31, 1640, 10.1063/1.1735906

1957, Z. Physik, 148, 380, 10.1007/BF01325571

1954, Phys. Rev., 94, 1558, 10.1103/PhysRev.94.1558

1960, Bull. Am. Phys. Soc., 5, 160

1959, J. Phys. Chem. Solids, 8, 223, 10.1016/0022-3697(59)90322-1

1959, J. Phys. Chem. Solids, 8, 219, 10.1016/0022-3697(59)90321-X

1961, Solid State Electronics, 2, 35, 10.1016/0038-1101(61)90054-5

1957, Z. Astrophysik, 43, 95

1949, Rev. Sci. Instr., 20, 884

1957, Z. Physik, 148, 385

1949, Bell System Tech. J., 28, 435, 10.1002/j.1538-7305.1949.tb03645.x

1959, Proc. Inst. Elec. Engrs. (London), 106, 908

1958, J. Tech. Phys. (U.S.S.R.), 28, 2115

1957, Proc. I.R.E., 45, 1228

1960, Bell System Tech. J., 39, 87, 10.1002/j.1538-7305.1960.tb03923.x

1957, Phys. Rev., 106, 418, 10.1103/PhysRev.106.418

1959, Bull. Am. Phys. Soc., 4, 409

1960, Bull. Am. Phys. Soc., 5, 160

1960, J. Appl. Phys., 31, 1821, 10.1063/1.1735455

1956, Bell System Tech. J., 35, 535, 10.1002/j.1538-7305.1956.tb02393.x

1960, Phys. Rev., 119, 1480, 10.1103/PhysRev.119.1480

1960, Proc. I.R.E., 48, 1259

1955, Proc. Phys. Soc. (London), B68, 319

1957, Phys. Rev., 105, 1469, 10.1103/PhysRev.105.1469

1958, Proc. Roy. Soc. (London), A249, 16

1957, Proc. I.R.E., 45, 1535

1961, Bull. Am. Phys. Soc., 6, 106