Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự không ổn định của các hạt tinh chế phủ bitum trong dầu thông qua việc kết tập hỗ trợ bởi nước sử dụng các phân tử sinh học chiết xuất từ hạt đậu guar
Tóm tắt
Quá trình chiết xuất không nước (NAE) bitumen từ cát dầu đang thu hút sự chú ý lớn từ cả ngành công nghiệp và học thuật như một lựa chọn thay thế cho phương pháp chiết xuất dựa trên nước. Một bước loại bỏ chất rắn mịn là rất quan trọng cho quy trình NAE nhằm đạt được sản phẩm bitumen chất lượng cao, tuy nhiên, việc giảm hàm lượng chất rắn mịn xuống mức mong muốn vẫn là một thách thức lớn. Tại đây, chúng tôi giới thiệu một chiến lược làm không ổn định các hạt silica được phủ bitumen trong toluene bằng cách thêm nước và các phân tử sinh học chiết xuất từ cây Cyamopsis tetragonolobus L. Taup., cụ thể là cao phân tử guar gum (HGG) và thấp phân tử guar gum (LGG). Nhờ vào các thử nghiệm lắng và phân tích đo phản xạ chùm tia tập trung, chúng tôi chỉ ra rằng các giọt nước được điều chỉnh bằng các phân tử sinh học này có thể thúc đẩy sự lắng đọng của các hạt rắn trong toluene mặc dù các cơ chế nền tảng khác nhau giữa hai trường hợp phân tử sinh học này. Cụ thể, trong trường hợp LGG, các giọt nước được thêm vào với LGG có tính chất ưa bề mặt có thể tăng cường sự gắn kết các hạt rắn từ khối toluene tới bề mặt LGG. Nghiên cứu này cung cấp những hiểu biết hữu ích về việc phát triển các phương pháp hiệu quả cho sự không ổn định và loại bỏ các chất rắn mịn được phủ bitumen từ bitumen NAE.
Từ khóa
#bitumen #chiết xuất không nước #cát dầu #hạt silica #kết tập #phân tử sinh học #guar gumTài liệu tham khảo
Akbarzadeh K, Alboudwarej H, Svrcek WY, Yarranton HW. A generalized regular solution model for asphaltene precipitation from n-alkane diluted heavy oils and bitumens. Fluid Phase Equilib. 2005;232(1–2):159–70. https://doi.org/10.1016/j.fluid.2005.03.029.
Alberta Government. Energy annual report 2017–2018. 2018. Available from: https://open.alberta.ca/publications/1703-4582.
Chakraborti RK, Gardner KH, Atkinson JF, Van Benschoten JE. Changes in fractal dimension during aggregation. Water Res. 2003;37(4):873–83. https://doi.org/10.1016/S0043-1354(02)00379-2.
Coleman RD, Sparks BD, Majid A, Toll FN. Agglomeration-flotation: recovery of hydrophobic components from oil sands fine tailings. Fuel. 1995;74(8):1156–61. https://doi.org/10.1016/0016-2361(95)00067-F.
Database C. Guar gum-9000-30-0. Copyright © ChemicalBook All rights reserved. 2017 [cited 2018 Jan 7]. Available from: https://www.chemicalbook.com/ProductChemicalPropertiesCB5253559_EN.htm.
Garcia Vidal CA, Pawlik M. Molecular weight effects in interactions of guar gum with talc. Int J Miner Process. 2015;138:38–43. https://doi.org/10.1016/j.minpro.2015.03.008.
Gupta BS, Ako JE. Application of guar gum as a flocculant aid in food processing and potable water treatment. Eur Food Res Technol. 2005;221(6):746–51. https://doi.org/10.1007/s00217-005-0056-4.
Hasan AMA, Abdel-Raouf ME. Applications of guar gum and its derivatives in petroleum industry: a review. Egypt J Pet Egypt Pet Res Inst. 2018;27(4):1043–50. https://doi.org/10.1016/j.ejpe.2018.03.005.
Hashmi SM, Firoozabadi A. Controlling nonpolar colloidal asphaltene aggregation by electrostatic repulsion. Energy Fuels. 2012;26(7):4438–44. https://doi.org/10.1021/ef3005702.
Hooshiar A, Uhlik P, Ivey DG, Liu Q, Etsell TH. Clay minerals in nonaqueous extraction of bitumen from Alberta oil sands: part 2. Characterization of clay minerals. Fuel Process Technol. 2012a;96:183–94. https://doi.org/10.1016/j.fuproc.2011.10.010.
Hooshiar A, Uhlik P, Liu Q, Etsell TH, Ivey DG. Clay minerals in nonaqueous extraction of bitumen from Alberta oil sands: part 1. Nonaqueous extraction procedure. Fuel Process Technol. 2012b;94(1):80–5. https://doi.org/10.1016/j.fuproc.2011.10.008.
Jeldres RI, Concha F, Toledo PG. Population balance modelling of particle fl occulation with attention to aggregate restructuring and permeability. Adv Colloid Interface Sci. 2015;224:62–71. https://doi.org/10.1016/j.cis.2015.07.009.
Jeldres RI, Fawell PD, Florio BJ. Population balance modelling to describe the particle aggregation process: a review. Powder Technol. 2018;326:190–207. https://doi.org/10.1016/j.powtec.2017.12.033.
Jian C, Poopari MR, Liu Q, Zerpa N, Zeng H, Tang T. Reduction of water/oil interfacial tension by model asphaltenes: the governing role of surface concentration. J Phys Chem B. 2016;120(25):5646–54. https://doi.org/10.1021/acs.jpcb.6b03691.
Jin Y, Liu W, Liu Q, Yeung A. Aggregation of silica particles in non-aqueous media. Fuel. 2011;90(8):2592–7. https://doi.org/10.1016/j.fuel.2011.04.030.
Li X, He L, Wu G, Sun W, Li H, Sui H. Operational parameters, evaluation methods, and fundamental mechanisms: aspects of nonaqueous extraction of bitumen from oil sands. Energy Fuels. 2012;26(6):3553–63. https://doi.org/10.1021/ef300337q.
Liu J, Cui X, Huang J, Xie L, Tan X, Liu Q, et al. Understanding the stabilization mechanism of bitumen-coated fine solids in organic media from non-aqueous extraction of oil sands. Fuel. 2019a;242:255–64. https://doi.org/10.1016/j.fuel.2019.01.029.
Liu J, Cui X, Santander C, Tan X, Liu Q, Zeng H. Destabilization of fi ne solids suspended in oil media through wettability modification and water-assisted agglomeration. Fuel. 2019b;254:115623. https://doi.org/10.1016/j.fuel.2019.115623.
Liu J, Wang J, Huang J, Cui X, Tan X, Liu Q, et al. Heterogeneous distribution of adsorbed bitumen on fine solids from solvent-based extraction of oil sands probed by AFM. Energy Fuels. 2017;31(9):8833–42. https://doi.org/10.1021/acs.energyfuels.7b00396.
Liu J, Xu Z, Masliyah J. Studies on Bitumen–silica interaction in aqueous solutions by atomic force microscopy. Langmuir. 2003;19(9):3911–20. https://doi.org/10.1021/la0268092.
Lu Q, Huang J, Liu Y, Zeng H, Yan B, Xie L. A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants. Sci Total Environ. 2016;565:369–75. https://doi.org/10.1016/j.scitotenv.2016.04.192.
Ma X, Pawlik M. Role of background ions in guar gum adsorption on oxide minerals and kaolinite. J Colloid Interface Sci. 2007;313(2):440–8. https://doi.org/10.1016/j.jcis.2007.04.075.
Nadeau PH. Relationships between the mean area, volume and thickness for dispersed particles of kaolinites and micaceous clays and their application to surface area and ion exchange properties. Clay Miner. 1987;22(3):351–6. https://doi.org/10.1180/claymin.1987.022.3.10.
Natarajan A, Kuznicki N, Harbottle D, Masliyah J, Zeng H, Xu Z. Understanding mechanisms of asphaltene adsorption from organic solvent on mica. Langmuir. 2014;30(31):9370–7. https://doi.org/10.1021/la500864h.
Natarajan A, Xie J, Wang S, Masliyah J, Zeng H, Xu Z. Understanding molecular interactions of asphaltenes in organic solvents using a surface force apparatus. J Phys Chem C. 2011;115(32):16043–51. https://doi.org/10.1021/jp2039674.
Osacky M, Geramian M, Ivey DG, Liu Q, Etsell TH. Influence of nonswelling clay minerals (illite, kaolinite, and chlorite) on nonaqueous solvent extraction of bitumen. Energy Fuels. 2015;29(7):4150–9. https://doi.org/10.1021/acs.energyfuels.5b00269.
Osacký M, Geramian M, Uhlík P, Čaplovičová M, Danková Z, Pálková H, et al. Mineralogy and surface chemistry of alberta oil sands: relevance to nonaqueous solvent bitumen extraction. Energy Fuels. 2017;31(9):8910–24. https://doi.org/10.1021/acs.energyfuels.7b00855.
Pal K, Nogueira Branco LDP, Heintz A, Choi P, Liu Q, Seidl PR, et al. Performance of solvent mixtures for non-aqueous extraction of Alberta oil sands. Energy Fuels. 2015;29(4):2261–7. https://doi.org/10.1021/ef502882c.
Pal S, Mal D, Singh RP. Synthesis and characterization of cationic guar gum: a high performance flocculating agent. J Appl Polym Sci. 2007;105(6):3240–5. https://doi.org/10.1002/app.26440.
Park JM, Kwon DJ, Wang ZJ, Byun JH, Lee HI, Park JK, et al. Novel method of electrical resistance measurement in structural composite materials for interfacial and dispersion evaluation with nano- and hetero-structures. Mater Res Soc Sympos Proc. 2014;1700:37–46. https://doi.org/10.1557/opl.2014.537.
Schäfer M, Polke R, Rädle M, Sachweh B, Scholz N, Heffels C. Control of particulate processes by optical measurement techniques. Part Part Syst Charact. 2002;15(5):211–8. https://doi.org/10.1002/(SICI)1521-4117(199810)15:5%3C211:AID-PPSC211%3E3.0.CO;2-H.
Sharma G, Sharma S, Kumar A, Al-muhtaseb AH, Naushad M, Ghfar AA, et al. Guar gum and its composites as potential materials for diverse applications: a review. Carbohydr Polym. 2018;199:534–45. https://doi.org/10.1016/j.carbpol.2018.07.053.
Singh RP, Karmakar GP, Rath SK, Karmakar NC, Pandey SR, Tripathy T, et al. Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym Eng Sci. 2000;40(1):46–60. https://doi.org/10.1002/pen.11138.
Sparks BD, Meadus FW. A study of some factors affecting solvent losses in the solvent extraction—spherical agglomeration of oil sands. Fuel Process Technol. 1981;4:251–64. https://doi.org/10.1016/0378-3820(81)90002-3.
Sparks BD, Meadus FW, Hoefele EO. Solvent extraction spherical agglomeration of oil sands. United States Patent. 1988;1–23. https://doi.org/10.1016/0160-4120(88)90049-9.
Tadayyon A, Rohani S. Determination of particle size distribution by Par-Tec® 100: modeling and experimental results. Part Part Syst Charact. 1998;15(3):127–35. https://doi.org/10.1002/(SICI)1521-4117(199817)15:3%3C127:AID-PPSC127%3E3.0.CO;2-B.
Tan X, Fenniri H, Gray MR. Water enhances the aggregation of model asphaltenes in solution via hydrogen bonding. Energy Fuels. 2009a;23(15):9080–6. https://doi.org/10.1021/ef900228s.
Tan X, Fenniri H, Gray MR. Water enhances the aggregation of model asphaltenes in solution via hydrogen bonding. Energy Fuels. 2009b;23(7):3687–93. https://doi.org/10.1021/ef900228s.
Tan X, Reed AH, Hu L, Zhang G, Furukawa Y. Flocculation and particle size analysis of expansive clay sediments affected by biological, chemical, and hydrodynamic factors. Ocean Dyn. 2013;64(1):143–57. https://doi.org/10.1007/s10236-013-0664-7.
Thombare N, Jha U, Mishra S, Siddiqui MZ. International journal of biological macromolecules guar gum as a promising starting material for diverse applications: a review. Int J Biol Macromol. 2016;88:361–72. https://doi.org/10.1016/j.ijbiomac.2016.04.001.
Wang J, Van Der Tuuk ON, Lu Q, Xu Z, Zeng H, Sjöblom J. Probing molecular interactions of an asphaltene model compound in organic solvents using a surface forces apparatus (SFA). Energy Fuels. 2012;26(5):2591–9.
Yan N, Gray MR, Masliyah JH. On water-in-oil emulsions stabilized by fine solids. Colloids Surf. 2001;193:97–107. https://doi.org/10.1016/S0927-7757(01)00748-8.
Yousif ME, Mohamed BE, Elkhedir AE. Physicochemical characterization of gum of some guar (Cyamposis tetragonoloba L. Taup) lines. J Food Process Technol. 2017;08(02):8–11. https://doi.org/10.4172/2157-7110.1000656.
Zhang L, Shi C, Lu Q, Liu Q, Zeng H. Probing molecular interactions of asphaltenes in heptol using a surface forces apparatus: implications on stability of water-in-oil emulsions. Langmuir. 2016;32:4886–95. https://doi.org/10.1021/acs.langmuir.6b01000.