Designing innovative productive cropping systems with quantified and ambitious environmental goals

Renewable Agriculture and Food Systems - Tập 30 Số 6 - Trang 487-502 - 2015
Caroline Colnenne-David1, Thierry Doré1
1Agronomie

Tóm tắt

AbstractAgriculture must face a number of very pressing environmental issues. We used the prototyping method to design three innovative cropping systems, each satisfying three ambitious goals simultaneously: (1) overcoming a major environmental constraint, which represents a major break regarding objectives to be reached in current cropping systems (differing between systems: a ban on all pesticides but with chemical nitrogen (N) fertilizer permitted; reducing fossil energy consumption by 50%; or decreasing greenhouse gas (GHG) emissions by 50%), (2) meeting a wide range of environmental criteria and (3) maximizing yields, given the major constraint and environmental targets. A fourth cropping system was designed, in which the environmental and yield targets were achieved with no major constraint (the productive high environmental performance cropping system (PHEP) system). The performances of these innovative cropping systems were compared to a conventional system in the Ile-de-France region. We used a three-step prototyping method: (1) new cropping systems were designed on the basis of scientific and expert knowledge, (2) these system prototypes were assessed with tools and a model (ex ante assessment) adjusted to the set of constraints and targets, with optimization by an iterative process until the criteria were satisfied and (3) evaluation in a long-term field experiment (ex post assessment), which is currently underway. We describe only the first two steps here, together with the results of the prototypes assessment with tools and a model. The pesticide, energy and GHG constraints were fulfilled. All these innovative systems satisfied environmental criteria in terms of nitrogen and phosphorus management, pesticide use, energy consumption and crop diversity. For the pesticide-free system, the soil organic matter indicator was lower than expected due to frequent plowing (every 2 years) and yields were 20–50% lower than for the PHEP system, depending on the crop considered. We focus our discussions on the design methodology and the availability of scientific knowledge and tools for projects of this type.

Từ khóa


Tài liệu tham khảo

10.1111/j.1475-2743.2010.00295.x

10.1016/j.agsy.2011.07.007

GES'TIM 2010. Ministère de l'agriculture, de l'alimentation, de la pêche, de la ruralité et de l'aménagement du territoire. Réf. 0933103.

10.1016/j.still.2011.03.006

10.2134/agronj2010.0211

Agreste, an agricultural statistical service of the French government. Available at Web site http://agreste.agriculture.gouv.fr/ (accessed August 22, 2014).

10.1016/j.agee.2007.01.007

10.1051/agro:2008058

10.1016/j.agsy.2012.01.004

10.1016/S0016-7061(97)00087-6

Klimekova, 2009, Comparison of yields and qualitative characters of spring barley grown, after three preceding crops in an organic farming system in the years, 2003–2008, Agronomy Research, 7, 335

10.1051/agro:19990504

Coleman K. and Jenkinson D.S. 1999. A model for the turnover of carbon in soil; Model description and windows users guide, IACR—Rothamsted. p. 47.

Baturo, 2007, Effect of organic system on spring barley stem base health in, comparison with integrated and conventional farming, Journal of Plant Protection Research, 47, 167

10.1016/j.agee.2010.10.001

10.1111/j.1365-2486.2012.02779.x

10.1007/s11104-009-0102-2

10.1007/s10705-005-0357-9

10.1016/j.apsoil.2009.11.005

10.1007/s10705-004-7356-0

Arrouays, 2002, Expertise scientifique collective ‘Contribution à la lutte contre l'effet de serre’ Stocker du carbone dans les sols agricoles de France? Collective Scientific Expert Report, 332

10.2134/agronj2004.3230

10.1126/science.277.5325.504

10.1016/S0065-2113(04)92004-4

Smith, 2007, Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

Feiza, 2010, Sustainable tillage: results from long-term field experiments on Cambisol, Zemdirbyste (Agriculture), 97, 3

10.1016/j.enpol.2009.06.042

10.1038/nature10452

10.1016/j.fcr.2009.10.012

IFEN, 2007. Les pesticides dans les eaux – données 2005. Les dossiers – n°9. Available at Web site http://www.ifen.fr/publications/le-catalogue-despublications/les-dossiers/2007/les-pesticides-dans-les-eaux-donnees-2005.html (accessed August 22, 2014).

10.1016/j.agsy.2010.10.002

10.1016/j.enpol.2008.08.016

Aubertot J.N. , Barbier J.M. , Carpentier A. , Gril J.J. , Guichard L. , Lucas P. , Savary S. , Savini I. , and Voltz M. 2005. Pesticides, agriculture and the environment: reducing the use of pesticides and limiting their environmental impact. Collective Scientific Expert Report. INRA – CEMAGREF. INRA edition. p. 63.

10.1126/science.1136674

10.1007/s11053-010-9113-1

Lehuger S. 2009. Modélisation des bilans de gaz à effet de serre des agro-systèmes en Europe. Thèse de doctorat de l'Institut des Sciences et Industries du Vivant et de l'Environnement AgroParisTech. p. 184.

10.1051/agro:2008064

10.2134/agronj2007.0222

Shadbolt, 2009, Comparisons between organic and conventional pastoral dairy farming, systems: cost of production and profitability, Journal of Farm Management, 13, 671

10.1016/S1161-0301(97)00039-7

Munier-Jolain N.M. , Faloya V. , Davaine J.B. , Biju-Duval L. , Meunier D. , Martin C. , and Charles R. 2004. A cropping system experiment for testing the principles of integrated weed management: first results. In Annales AFPP, XIIe colloque international sur la biologie des mauvaises herbes, Dijon. p. 147–156.

10.1016/j.agsy.2004.08.002

Schrack, 2009, Rémanence des pesticides dans les eaux issues de parcelles agricoles récemment converties à l'Agriculture Biologique, Innovations Agronomiques, 4, 259

10.1016/j.agee.2009.04.009

10.1051/agro:2006037

10.1016/j.agee.2007.11.002

10.1016/j.agee.2010.05.005

10.1007/s10705-006-9074-2

10.1016/j.eja.2007.11.004

10.1017/S1742170509002555

10.1016/j.agee.2010.12.008

10.3724/SP.J.1006.2009.01708

10.1016/j.eja.2008.06.001

10.1051/agro:2007052

10.5194/bg-10-1787-2013

UNEP 2007. Available at Web site http://www.unep.org/PDF/AnnualReport/2007/AnnualReport2007_en_web.pdf (accessed August 22, 2014).

10.1016/j.geoderma.2004.01.021

10.1016/j.still.2003.11.002

10.1051/agro:2008050

10.1016/j.enpol.2009.09.015

10.1021/es903385g

10.1016/j.still.2011.06.001

2007, The Physical Science Basis, 1009

10.1016/j.agsy.2011.12.004

Shili-Touzi, Is it possible to manage competition between wheat and alfalfa grown as a service plant in an intercropping system in temperate conditions?, Agriculture, Ecosystems and Environment

Fu, 2010, Spatial variation of soil test phosphorus in a long-term grazed, experimental grassland field, Journal of Plant Nutrition and Soil Science, 173, 323, 10.1002/jpln.200800275

10.1016/j.agee.2005.07.011

Nowacki, 2008, Comparison of profitability of potato cultivation in organic and, integrated farming systems, Progress in Plant Protection, 48, 1526

10.1007/s00374-008-0271-9

10.1016/j.geoderma.2011.07.005

Loyce C. and Wery J. 2006. Les outils des agronomes pour l'évaluation et la conception de systèmes de culture. L'agronomie aujourd'hui, QUAE éditions, 77–95.

Riley, 2012, Economic and environmental optimization of nitrogen fertilizer recommendations for cereals in Norway, Acta Agriculturae Scandinavica, Section B, Soil and Plant Science, 62, 387

10.1016/j.agsy.2009.02.004