2 B. Dunn H. Kamath J.M. Tarascon Electrical energy storage for the grid: a battery of choices Science 334 2011 928 935 Dunn, B., Kamath, H., and Tarascon, J.M. (2011). Electrical energy storage for the grid: a battery of choices. Science 334, 928-935.
4 M. Armand J.M. Tarascon Building better batteries Nature 451 2008 652 657 Armand, M., and Tarascon, J.M. (2008). Building better batteries. Nature 451, 652-657.
5 N. Nitta F. Wu J.T. Lee G. Yushin Li-ion battery materials: present and future Mater. Today 18 2015 252 264 Nitta, N., Wu, F., Lee, J.T., and Yushin, G. (2015). Li-ion battery materials: present and future. Mater. Today 18, 252-264.
6 J.B. Goodenough How we made the Li-ion rechargeable battery Nat. Electron 1 2018 204 Goodenough, J.B. (2018). How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204.
7 Z.P. Cano D. Banham S. Ye A. Hintennach J. Lu M. Fowler Z. Chen Batteries and fuel cells for emerging electric vehicle markets Nat. Energy 3 2018 279 289 Cano, Z.P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., and Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279-289.
10 H. Zhang G.G. Eshetu X. Judez C. Li L.M. Rodriguez-Martínez M. Armand Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progresses and perspectives Angew. Chem. Int. Ed. 57 2018 15002 15027 Zhang, H., Eshetu, G.G., Judez, X., Li, C., Rodriguez-Martinez, L.M., and Armand, M. (2018). Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progresses and perspectives. Angew. Chem. Int. Ed. 57, 15002-15027.
11 Y. Shen Y. Zhang S. Han J. Wang Z. Peng L. Chen Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes Joule 2 2018 1674 1689 Shen, Y., Zhang, Y., Han, S., Wang, J., Peng, Z., and Chen, L. (2018). Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes. Joule 2, 1674-1689.
12 X. Judez G.G. Eshetu C. Li L.M. Rodriguez-Martinez H. Zhang M. Armand Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes Joule 2 2018 2208 2224 Judez, X., Eshetu, G.G., Li, C., Rodriguez-Martinez, L.M., Zhang, H., and Armand, M. (2018). Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes. Joule 2, 2208-2224.
13 Y.X. Yin S. Xin Y.G. Guo L.J. Wan Lithium-sulfur batteries: Electrochemistry, materials, and prospects Angew. Chem. Int. Ed. Engl. 52 2013 13186 13200 Yin, Y.X., Xin, S., Guo, Y.G., and Wan, L.J. (2013). Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. Engl. 52, 13186-13200.
14 L.F. Nazar M. Cuisinier Q. Pang Lithium-sulfur batteries MRS Bull. 39 2014 436 442 Nazar, L.F., Cuisinier, M., and Pang, Q. (2014). Lithium-sulfur batteries. MRS Bull. 39, 436-442.
15 W. Xu J. Wang F. Ding X. Chen E. Nasybulin Y. Zhang J.-G. Zhang Lithium metal anodes for rechargeable batteries Energy Environ. Sci. 7 2014 513 537 Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., and Zhang, J.-G. (2014). Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513-537.
16 R. Cao W. Xu D. Lv J. Xiao J.-G. Zhang Anodes for rechargeable lithium-sulfur batteries Adv. Energy Mater 5 2015 1402273 Cao, R., Xu, W., Lv, D., Xiao, J., and Zhang, J.-G. (2015). Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 5, 1402273.
19 D.E. Fenton J.M. Parker P.V. Wright Complexes of alkali metal ions with poly(ethylene oxide) Polymer 14 1973 589 Fenton, D.E., Parker, J.M., and Wright, P.V. (1973). Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589.
22 V. Di Noto S. Lavina G.A. Giffin E. Negro B. Scrosati Polymer electrolytes: present, past and future Electrochim. Acta 57 2011 4 13 Di Noto, V., Lavina, S., Giffin, G.A., Negro, E., and Scrosati, B. (2011). Polymer electrolytes: present, past and future. Electrochim. Acta 57, 4-13.
23 D.T. Hallinan N.P. Balsara Polymer electrolytes Annu. Rev. Mater. Res. 43 2013 503 525 Hallinan, D.T., and Balsara, N.P. (2013). Polymer electrolytes. Annu. Rev. Mater. Res. 43, 503-525.
24 H. Zhang C. Li M. Piszcz E. Coya T. Rojo L.M. Rodriguez-Martinez M. Armand Z. Zhou Single lithium-ion conducting solid polymer electrolytes: advances and perspectives Chem. Soc. Rev. 46 2017 797 815 Zhang, H., Li, C., Piszcz, M., Coya, E., Rojo, T., Rodriguez-Martinez, L.M., Armand, M., and Zhou, Z. (2017). Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797-815.
25 C. Li H. Zhang L. Otaegui G. Singh M. Armand L.M. Rodriguez-Martinez Estimation of energy density of Li-S batteries with liquid and solid electrolytes J. Power Sources 326 2016 1 5 Li, C., Zhang, H., Otaegui, L., Singh, G., Armand, M., and Rodriguez-Martinez, L.M. (2016). Estimation of energy density of Li-S batteries with liquid and solid electrolytes. J. Power Sources 326, 1-5.
26 X. Judez H. Zhang C. Li G.G. Eshetu J.A. González-Marcos M. Armand L.M. Rodriguez-Martinez Review—Solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges. J. Electrochem. Soc 165 2018 A6008 A6016 Judez, X., Zhang, H., Li, C., Eshetu, G.G., Gonzalez-Marcos, J.A., Armand, M., and Rodriguez-Martinez, L.M. (2018). Review-Solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges. J. Electrochem. Soc. 165, A6008-A6016.
28 R. Younesi G.M. Veith P. Johansson K. Edström T. Vegge Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S Energy Environ. Sci. 8 2015 1905 1922 Younesi, R., Veith, G.M., Johansson, P., Edstrom, K., and Vegge, T. (2015). Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S. Energy Environ. Sci. 8, 1905-1922.
29 H. Zhang C. Liu L. Zheng F. Xu W. Feng H. Li X. Huang M. Armand J. Nie Z. Zhou Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte Electrochim. Acta 133 2014 529 538 Zhang, H., Liu, C., Zheng, L., Xu, F., Feng, W., Li, H., Huang, X., Armand, M., Nie, J., and Zhou, Z. (2014). Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochim. Acta 133, 529-538.
30 X. Judez H. Zhang C. Li J.A. González-Marcos Z. Zhou M. Armand L.M. Rodriguez-Martinez Lithium bis(fluorosulfonyl) imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li–S cell J. Phys. Chem. Lett. 8 2017 1956 1960 Judez, X., Zhang, H., Li, C., Gonzalez-Marcos, J.A., Zhou, Z., Armand, M., and Rodriguez-Martinez, L.M. (2017). Lithium bis(fluorosulfonyl) imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li-S cell. J. Phys. Chem. Lett. 8, 1956-1960.
31 G.G. Eshetu X. Judez C. Li O. Bondarchuk L.M. Rodriguez-Martinez H. Zhang M. Armand Lithium azide as an electrolyte additive for all-solid-state lithium–sulfur batteries Angew. Chem. Int. Ed. Engl. 56 2017 15368 15372 Eshetu, G.G., Judez, X., Li, C., Bondarchuk, O., Rodriguez-Martinez, L.M., Zhang, H., and Armand, M. (2017). Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries. Angew. Chem. Int. Ed. Engl. 56, 15368-15372.
32 G.G. Eshetu X. Judez C. Li M. Martinez-Ibañez I. Gracia O. Bondarchuk J. Carrasco L.M. Rodriguez-Martinez H. Zhang M. Armand Ultrahigh performance all solid-state lithium sulfur batteries: salt anion's chemistry-induced anomalous synergistic effect J. Am. Chem. Soc. 140 2018 9921 9933 Eshetu, G.G., Judez, X., Li, C., Martinez-Ibañez, M., Gracia, I., Bondarchuk, O., Carrasco, J., Rodriguez-Martinez, L.M., Zhang, H., and Armand, M. (2018). Ultrahigh performance all solid-state lithium sulfur batteries: salt anion's chemistry-induced anomalous synergistic effect. J. Am. Chem. Soc. 140, 9921-9933.
33 H. Zhang U. Oteo H. Zhu X. Judez M. Martinez-Ibañez I. Aldalur E. Sanchez-Diez C. Li J. Carrasco M. Forsyth Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion Angew. Chem. Int. Ed. Engl. 2019 10.1002/ange.201813700 Zhang, H., Oteo, U., Zhu, H., Judez, X., Martinez-Ibañez, M., Aldalur, I., Sanchez-Diez, E., Li, C., Carrasco, J., Forsyth, M., et al. (2019). Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion. Angew. Chem. Int. Ed. Engl. [doi:10.1002/ange.201813700].
34 U. Oteo M. Martinez-Ibañez I. Aldalur E. Sanchez-Diez J. Carrasco M. Armand H. Zhang Improvement of the cationic transport in polymer electrolytes with (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide salts ChemElectroChem 6 2019 1019 1022 Oteo, U., Martinez-Ibañez, M., Aldalur, I., Sanchez-Diez, E., Carrasco, J., Armand, M., and Zhang, H. (2019). Improvement of the cationic transport in polymer electrolytes with (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide salts. ChemElectroChem 6, 1019-1022.
35 X.-G. Sun J.B. Kerr Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis(allylmalonato)borate Macromolecules 39 2006 362 372 Sun, X.-G., and Kerr, J.B. (2006). Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis(allylmalonato)borate. Macromolecules 39, 362-372.
37 Z. Lin Z. Liu N.J. Dudney C. Liang Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries ACS Nano 7 2013 2829 2833 Lin, Z., Liu, Z., Dudney, N.J., and Liang, C. (2013). Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano 7, 2829-2833.
38 I. Aldalur M. Martinez-Ibañez M. Piszcz H. Zhang M. Armand Self-standing highly conductive solid electrolytes based on block copolymers for rechargeable all-solid-state lithium-metal batteries Batteries & Supercaps 1 2018 149 159 Aldalur, I., Martinez-Ibañez, M., Piszcz, M., Zhang, H., and Armand, M. (2018). Self-standing highly conductive solid electrolytes based on block copolymers for rechargeable all-solid-state lithium-metal batteries. Batteries & Supercaps 1, 149-159.
39 X. Judez H. Zhang C. Li G.G. Eshetu Y. Zhang J.A. González-Marcos M. Armand L.M. Rodriguez-Martinez Polymer-rich composite electrolytes for all-solid-state Li–S cells J. Phys. Chem. Lett. 8 2017 3473 3477 Judez, X., Zhang, H., Li, C., Eshetu, G.G., Zhang, Y., Gonzalez-Marcos, J.A., Armand, M., and Rodriguez-Martinez, L.M. (2017). Polymer-rich composite electrolytes for all-solid-state Li-S cells. J. Phys. Chem. Lett. 8, 3473-3477.
40 J. Qian W.A. Henderson W. Xu P. Bhattacharya M. Engelhard O. Borodin J.G. Zhang High rate and stable cycling of lithium metal anode Nat. Commun 6 2015 6362 Qian, J., Henderson, W.A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O., and Zhang, J.G. (2015). High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362.
42 L. Suo Y.S. Hu H. Li M. Armand L. Chen A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries Nat. Commun 4 2013 1481 Suo, L., Hu, Y.S., Li, H., Armand, M., and Chen, L. (2013). A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481.
43 G.G. Eshetu T. Diemant S. Grugeon R.J. Behm S. Laruelle M. Armand S. Passerini In-depth interfacial chemistry and reactivity focused investigation of lithium–imide- and lithium–imidazole-based electrolytes ACS Appl. Mater. Interfaces 8 2016 16087 16100 Eshetu, G.G., Diemant, T., Grugeon, S., Behm, R.J., Laruelle, S., Armand, M., and Passerini, S. (2016). In-depth interfacial chemistry and reactivity focused investigation of lithium-imide- and lithium-imidazole-based electrolytes. ACS Appl. Mater. Interfaces 8, 16087-16100.
44 D. Aurbach I. Weissman On the possibility of LiH formation on Li surfaces in wet electrolyte solutions Electrochem. Commun 1 1999 324 331 Aurbach, D., and Weissman, I. (1999). On the possibility of LiH formation on Li surfaces in wet electrolyte solutions. Electrochem. Commun. 1, 324-331.
45 Z. Deng Z. Zhang Y. Lai J. Liu J. Li Y. Liu Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading J. Electrochem. Soc. 160 2013 A553 A558 Deng, Z., Zhang, Z., Lai, Y., Liu, J., Li, J., and Liu, Y. (2013). Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J. Electrochem. Soc. 160, A553-A558.
46 I. Aldalur M. Martinez-Ibañez M. Piszcz L.M. Rodriguez-Martinez H. Zhang M. Armand Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes J. Power Sources 383 2018 144 149 Aldalur, I., Martinez-Ibañez, M., Piszcz, M., Rodriguez-Martinez, L.M., Zhang, H., and Armand, M. (2018). Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes. J. Power Sources 383, 144-149.
47 I. Aldalur M. Martinez-Ibañez A. Krztoń-Maziopa M. Piszcz M. Armand H. Zhang Flowable polymer electrolytes for lithium metal batteries J. Power Sources 423 2019 218 226 Aldalur, I., Martinez-Ibañez, M., Krztoń-Maziopa, A., Piszcz, M., Armand, M., and Zhang, H. (2019). Flowable polymer electrolytes for lithium metal batteries. J. Power Sources 423, 218-226.
48 J. Ma Z. Fang Y. Yan Z. Yang L. Gu Y.-S. Hu H. Li Z. Wang X. Huang Novel large-scale synthesis of a C/S nanocomposite with mixed conducting networks through a spray drying approach for Li–S batteries Adv. Energy Mater 5 2015 1500046 Ma, J., Fang, Z., Yan, Y., Yang, Z., Gu, L., Hu, Y.-S., Li, H., Wang, Z., and Huang, X. (2015). Novel large-scale synthesis of a C/S nanocomposite with mixed conducting networks through a spray drying approach for Li-S batteries. Adv. Energy Mater. 5, 1500046.
50 Q. Pang A. Shyamsunder B. Narayanan C.Y. Kwok L.A. Curtiss L.F. Nazar Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries Nat. Energy 3 2018 783 791 Pang, Q., Shyamsunder, A., Narayanan, B., Kwok, C.Y., Curtiss, L.A., and Nazar, L.F. (2018). Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 3, 783-791.
51 C.D. Wagner W.M. Riggs L.E. Davis J.F. Moulder G.E. Muilenberg A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy 1979 Perkin-Elemer Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E. (1979) A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy. (Perkin-Elemer).
54 V. Blum R. Gehrke F. Hanke P. Havu V. Havu X. Ren K. Reuter M. Scheffler Ab initio molecular simulations with numeric atom-centered orbitals Comput. Phys. Commun 180 2009 2175 2196 Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K., and Scheffler, M. (2009). Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175-2196.
56 M.D. Hanwell D.E. Curtis D.C. Lonie T. Vandermeersch E. Zurek G.R. Hutchison Avogadro: an advanced semantic chemical editor, visualization, and analysis platform J. ChemInform 4 2012 17 Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., and Hutchison, G.R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. ChemInform 4, 17.