Designer Anion Enabling Solid-State Lithium-Sulfur Batteries

Joule - Tập 3 - Trang 1689 - 2019
Michel Armand1, Heng Zhang1, Gebrekidan Gebresilassie Eshetu2,3, Uxue Oteo1, Xabier Judez1, Maria Martinez-Ibañez1, Javier Carrasco1, Chunmei Li1
1Electrical Energy Storage Department, CIC Energigune, Parque Tecnológico de Álava, Albert Einstein 48, 01510 Miñano, Álava, Spain
2Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Jägerstraße 17/19, 52066 Aachen, Germany
3Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia

Tóm tắt

With an extremely high theoretical energy density, solid-state lithium-sulfur (Li-S) batteries (SSLSBs) are emerging as one of the most feasible chemistries; however, their energy efficiency and long-term cyclability are severely hampered by the lithium metal (Li°) dendrite formation during repeated discharge/charge cycles and the shuttling of aggressive polysulfide intermediates between two electrodes. Herein, we report (difluoromethanesulfonyl) (trifluoromethanesulfonyl)imide anion [N(SO2CF2H)(SO2CF3)]−, hereafter DFTFSI−, as a designer anion for high-performance polymer-based SSLSBs. In contrast to the widely used bis(trifluoromethanesulfonyl)imide anion [N(SO2CF3)2]− (TFSI−), DFTFSI-based SSLSBs provide superior interfacial stability against Li°, extremely high discharge and areal capacities, very high Coulombic efficiency, and long-term cyclability, surpassing the reported literature values, in terms of gravimetric energy density. This work opens a new door for accelerating the practical deployment of SSLSBs in the future.

Từ khóa

#designer anion #polymer electrolyte #lithium-sulfur battery #solid-state battery #Li metal electrode #(difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide

Tài liệu tham khảo

2 B. Dunn H. Kamath J.M. Tarascon Electrical energy storage for the grid: a battery of choices Science 334 2011 928 935 Dunn, B., Kamath, H., and Tarascon, J.M. (2011). Electrical energy storage for the grid: a battery of choices. Science 334, 928-935.

4 M. Armand J.M. Tarascon Building better batteries Nature 451 2008 652 657 Armand, M., and Tarascon, J.M. (2008). Building better batteries. Nature 451, 652-657.

5 N. Nitta F. Wu J.T. Lee G. Yushin Li-ion battery materials: present and future Mater. Today 18 2015 252 264 Nitta, N., Wu, F., Lee, J.T., and Yushin, G. (2015). Li-ion battery materials: present and future. Mater. Today 18, 252-264.

6 J.B. Goodenough How we made the Li-ion rechargeable battery Nat. Electron 1 2018 204 Goodenough, J.B. (2018). How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204.

12 X. Judez G.G. Eshetu C. Li L.M. Rodriguez-Martinez H. Zhang M. Armand Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes Joule 2 2018 2208 2224 Judez, X., Eshetu, G.G., Li, C., Rodriguez-Martinez, L.M., Zhang, H., and Armand, M. (2018). Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes. Joule 2, 2208-2224.

14 L.F. Nazar M. Cuisinier Q. Pang Lithium-sulfur batteries MRS Bull. 39 2014 436 442 Nazar, L.F., Cuisinier, M., and Pang, Q. (2014). Lithium-sulfur batteries. MRS Bull. 39, 436-442.

16 R. Cao W. Xu D. Lv J. Xiao J.-G. Zhang Anodes for rechargeable lithium-sulfur batteries Adv. Energy Mater 5 2015 1402273 Cao, R., Xu, W., Lv, D., Xiao, J., and Zhang, J.-G. (2015). Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 5, 1402273.

19 D.E. Fenton J.M. Parker P.V. Wright Complexes of alkali metal ions with poly(ethylene oxide) Polymer 14 1973 589 Fenton, D.E., Parker, J.M., and Wright, P.V. (1973). Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589.

null

22 V. Di Noto S. Lavina G.A. Giffin E. Negro B. Scrosati Polymer electrolytes: present, past and future Electrochim. Acta 57 2011 4 13 Di Noto, V., Lavina, S., Giffin, G.A., Negro, E., and Scrosati, B. (2011). Polymer electrolytes: present, past and future. Electrochim. Acta 57, 4-13.

23 D.T. Hallinan N.P. Balsara Polymer electrolytes Annu. Rev. Mater. Res. 43 2013 503 525 Hallinan, D.T., and Balsara, N.P. (2013). Polymer electrolytes. Annu. Rev. Mater. Res. 43, 503-525.

28 R. Younesi G.M. Veith P. Johansson K. Edström T. Vegge Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S Energy Environ. Sci. 8 2015 1905 1922 Younesi, R., Veith, G.M., Johansson, P., Edstrom, K., and Vegge, T. (2015). Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S. Energy Environ. Sci. 8, 1905-1922.

31 G.G. Eshetu X. Judez C. Li O. Bondarchuk L.M. Rodriguez-Martinez H. Zhang M. Armand Lithium azide as an electrolyte additive for all-solid-state lithium–sulfur batteries Angew. Chem. Int. Ed. Engl. 56 2017 15368 15372 Eshetu, G.G., Judez, X., Li, C., Bondarchuk, O., Rodriguez-Martinez, L.M., Zhang, H., and Armand, M. (2017). Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries. Angew. Chem. Int. Ed. Engl. 56, 15368-15372.

33 H. Zhang U. Oteo H. Zhu X. Judez M. Martinez-Ibañez I. Aldalur E. Sanchez-Diez C. Li J. Carrasco M. Forsyth Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion Angew. Chem. Int. Ed. Engl. 2019 10.1002/ange.201813700 Zhang, H., Oteo, U., Zhu, H., Judez, X., Martinez-Ibañez, M., Aldalur, I., Sanchez-Diez, E., Li, C., Carrasco, J., Forsyth, M., et al. (2019). Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion. Angew. Chem. Int. Ed. Engl. [doi:10.1002/ange.201813700].

35 X.-G. Sun J.B. Kerr Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis(allylmalonato)borate Macromolecules 39 2006 362 372 Sun, X.-G., and Kerr, J.B. (2006). Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis(allylmalonato)borate. Macromolecules 39, 362-372.

37 Z. Lin Z. Liu N.J. Dudney C. Liang Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries ACS Nano 7 2013 2829 2833 Lin, Z., Liu, Z., Dudney, N.J., and Liang, C. (2013). Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano 7, 2829-2833.

38 I. Aldalur M. Martinez-Ibañez M. Piszcz H. Zhang M. Armand Self-standing highly conductive solid electrolytes based on block copolymers for rechargeable all-solid-state lithium-metal batteries Batteries & Supercaps 1 2018 149 159 Aldalur, I., Martinez-Ibañez, M., Piszcz, M., Zhang, H., and Armand, M. (2018). Self-standing highly conductive solid electrolytes based on block copolymers for rechargeable all-solid-state lithium-metal batteries. Batteries & Supercaps 1, 149-159.

44 D. Aurbach I. Weissman On the possibility of LiH formation on Li surfaces in wet electrolyte solutions Electrochem. Commun 1 1999 324 331 Aurbach, D., and Weissman, I. (1999). On the possibility of LiH formation on Li surfaces in wet electrolyte solutions. Electrochem. Commun. 1, 324-331.

51 C.D. Wagner W.M. Riggs L.E. Davis J.F. Moulder G.E. Muilenberg A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy 1979 Perkin-Elemer Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E. (1979) A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy. (Perkin-Elemer).