Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries

Materials Horizons - Tập 6 Số 9 - Trang 1812-1827
Chao Han1,2,3,4,5, Weijie Li1,2,3,4,5, Huan Liu1,2,3,4,5, Shi Xue Dou1,2,3,4,5, Jiazhao Wang1,2,3,4,5
1AIIM Building
2Innovation Campus
3Institute for Superconducting and Electronic Materials, AIIM Building, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, Australia
4North Wollongong
5University of Wollongong,

Tóm tắt

Strategies that could be used to develop non-precious-metal based catalysts towards the OER/ORR in alkaline electrolyte based zinc–air systems are briefly reviewed.

Từ khóa


Tài liệu tham khảo

Hu, 2018, Nat. Mater., 17, 480, 10.1038/s41563-018-0090-9

Wang, 2019, Joule, 3, 1289, 10.1016/j.joule.2019.02.012

Wang, 2018, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z

Yi, 2018, Energy Environ. Sci., 11, 3075, 10.1039/C8EE01991F

Xu, 2012, Angew. Chem., Int. Ed., 124, 957, 10.1002/ange.201106307

Hardin, 2013, J. Phys. Chem. Lett., 4, 1254, 10.1021/jz400595z

Alfaruqi, 2015, Chem. Mater., 27, 3609, 10.1021/cm504717p

Lee, 2016, Nano Lett., 16, 1794, 10.1021/acs.nanolett.5b04788

Mainar, 2016, Int. J. Energy Res., 40, 1032, 10.1002/er.3499

Zhang, 2016, J. Am. Chem. Soc., 138, 12894, 10.1021/jacs.6b05958

Fu, 2017, Adv. Mater., 29, 1604685, 10.1002/adma.201604685

Gu, 2017, J. Mater. Chem. A, 5, 7651, 10.1039/C7TA01693J

Li, 2014, Chem. Soc. Rev., 43, 5257, 10.1039/C4CS00015C

Davari, 2018, Sustainable Energy Fuels, 2, 39, 10.1039/C7SE00413C

Yoo, 2014, Mater. Today, 17, 110, 10.1016/j.mattod.2014.02.014

Stamm, 2017, J. Power Source, 360, 136, 10.1016/j.jpowsour.2017.05.073

Seh, 2017, Science, 355, eaad4998, 10.1126/science.aad4998

Chakkaravarthy, 1981, J. Power Source, 6, 203, 10.1016/0378-7753(81)80027-4

Goldstein, 1993, IEEE Aero. Electronic Sys. Mag., 8, 34, 10.1109/62.242061

Goldstein, 1999, J. Power Source, 80, 171, 10.1016/S0378-7753(98)00260-2

Deiss, 2002, Electrochim. Acta, 47, 3995, 10.1016/S0013-4686(02)00316-X

Zhu, 2003, J. Appl. Electrochem., 33, 29, 10.1023/A:1022986707273

Smedley, 2007, J. Power Source, 165, 897, 10.1016/j.jpowsour.2006.11.076

Parker, 2017, Science, 356, 415, 10.1126/science.aak9991

Kim, 2018, ACS Nano, 12, 11838, 10.1021/acsnano.8b02744

Ma, 2018, ACS Nano, 12, 8597, 10.1021/acsnano.8b04317

Mainar, 2018, J. Energy Storage, 15, 304, 10.1016/j.est.2017.12.004

Tan, 2018, ACS Appl. Mater. Interfaces, 10, 36873, 10.1021/acsami.8b10778

He, 2017, Adv. Energy Mater., 7, 1601920, 10.1002/aenm.201601920

Hu, 2017, ACS Appl. Mater. Interfaces, 9, 42717, 10.1021/acsami.7b13110

Li, 2017, Nano Lett., 17, 156, 10.1021/acs.nanolett.6b03691

Wang, 2018, Adv. Funct. Mater., 28, 1803329, 10.1002/adfm.201803329

Yan, 2017, Adv. Mater., 29, 1606459, 10.1002/adma.201606459

Jiao, 2015, Chem. Soc. Rev., 44, 2060, 10.1039/C4CS00470A

Yi, 2019, Organometallics, 38, 1186, 10.1021/acs.organomet.8b00508

Pei, 2014, Appl. Energy, 128, 315, 10.1016/j.apenergy.2014.04.095

Chen, 2009, Prog. Nat. Sci., 19, 291, 10.1016/j.pnsc.2008.07.014

Akinyele, 2014, Sustain. Energy Technol. Assessments, 8, 74, 10.1016/j.seta.2014.07.004

Toussaint, 2010, ECS Trans., 28, 25, 10.1149/1.3507924

Zakeri, 2015, Renewable Sustainable Energy Rev., 42, 569, 10.1016/j.rser.2014.10.011

Jülch, 2016, Appl. Energy, 183, 1594, 10.1016/j.apenergy.2016.08.165

Wittmaier, 2014, J. Appl. Electrochem., 44, 73, 10.1007/s10800-013-0602-x

J. Dixon , in Energy storage for electric vehicles , 2010 IEEE International Conference on Industrial Technology, 14–17 March 2010, 2010, pp. 20–26

Dunn, 2011, Science, 334, 928, 10.1126/science.1212741

Guo, 2016, J. Mater. Chem. A, 4, 6282, 10.1039/C6TA02030E

Christensen, 2016, J. Phys. Chem. C, 120, 24910, 10.1021/acs.jpcc.6b09141

Huang, 2017, Adv. Energy Mater., 7, 1700544, 10.1002/aenm.201700544

Fan, 2018, ACS Nano, 12, 12369, 10.1021/acsnano.8b06312

Mabayoje, 2016, ACS Energy Lett., 1, 195, 10.1021/acsenergylett.6b00084

Busch, 2016, Nano Energy, 29, 126, 10.1016/j.nanoen.2016.04.011

Meng, 2016, J. Am. Chem. Soc., 138, 10226, 10.1021/jacs.6b05046

Gupta, 2016, Adv. Energy Mater., 6, 1601198, 10.1002/aenm.201601198

Ling, 2016, Nat. Commun., 7, 12876, 10.1038/ncomms12876

Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087

Ma, 2016, Int. J. Hydrogen Energy, 41, 9211, 10.1016/j.ijhydene.2015.12.022

Chen, 2012, Electrochim. Acta, 69, 295, 10.1016/j.electacta.2012.03.001

Chakrapani, 2018, ACS Catal., 8, 1259, 10.1021/acscatal.7b03529

Jung, 2016, Energy Environ. Sci., 9, 176, 10.1039/C5EE03124A

Liu, 2018, Adv. Funct. Mater., 28, 1706675, 10.1002/adfm.201706675

Li, 2017, Adv. Funct. Mater., 27, 1703779, 10.1002/adfm.201703779

Zhong, 2016, NPG Asia Mater., 8, e308, 10.1038/am.2016.132

Zhan, 2015, ACS Appl. Mater. Interfaces, 7, 12930, 10.1021/acsami.5b02670

Wang, 2017, Nano Energy, 40, 382, 10.1016/j.nanoen.2017.08.040

Fan, 2017, Small, 13, 1700099, 10.1002/smll.201700099

Qin, 2018, Chem. Commun., 54, 7693, 10.1039/C8CC03902J

Li, 2018, Adv. Mater., 30, 1705796, 10.1002/adma.201705796

Li, 2016, Energy Environ. Sci., 9, 3079, 10.1039/C6EE02169G

Chai, 2017, Energy Environ. Sci., 10, 1186, 10.1039/C6EE03446B

Liu, 2016, Adv. Mater., 28, 3000, 10.1002/adma.201506112

Maiyalagan, 2014, Nat. Commun., 5, 3949, 10.1038/ncomms4949

Gorlin, 2013, J. Am. Chem. Soc., 135, 8525, 10.1021/ja3104632

Gorlin, 2010, J. Am. Chem. Soc., 132, 13612, 10.1021/ja104587v

Mosa, 2016, J. Mater. Chem. A, 4, 620, 10.1039/C5TA07878D

Paulraj, 2018, Catalysts, 8, 328, 10.3390/catal8080328

Bai, 2018, Adv. Energy Mater., 8, 1802390, 10.1002/aenm.201802390

Cai, 2017, J. Mater. Chem. A, 5, 2488, 10.1039/C6TA09615H

Dhavale, 2015, ACS Catal., 5, 1445, 10.1021/cs501571e

Lee, 2014, Adv. Energy Mater., 4, 1301389, 10.1002/aenm.201301389

Lee, 2018, ChemSusChem, 11, 406, 10.1002/cssc.201701832

Lee, 2014, Electrochem. Commun., 43, 109, 10.1016/j.elecom.2014.03.020

Li, 2018, Adv. Mater., 30, 1804653, 10.1002/adma.201804653

Devaguptapu, 2017, ACS Appl. Mater. Interfaces, 9, 44567, 10.1021/acsami.7b16389

Meng, 2014, J. Am. Chem. Soc., 136, 11452, 10.1021/ja505186m

Ma, 2014, J. Am. Chem. Soc., 136, 13925, 10.1021/ja5082553

Park, 2016, Small, 12, 2707, 10.1002/smll.201600051

Huang, 2019, Adv. Mater., 1801430, 10.1002/adma.201801430

Marković, 1994, J. Electroanal. Chem., 377, 249, 10.1016/0022-0728(94)03467-2

Gamboa-Aldeco, 1993, J. Electroanal. Chem., 348, 451, 10.1016/0022-0728(93)80151-7

Wang, 2007, J. Am. Chem. Soc., 129, 6974, 10.1021/ja070440r

Chen, 2007, Angew. Chem., Int. Ed., 119, 4138, 10.1002/ange.200700894

Quan, 2013, Acc. Chem. Res., 46, 191, 10.1021/ar200293n

Yang, 2008, Nature, 453, 638, 10.1038/nature06964

Kuo, 2015, Chem. Commun., 51, 5951, 10.1039/C5CC01152C

Park, 2018, ACS Catal., 8, 9647, 10.1021/acscatal.8b01725

Lee, 2006, Angew. Chem., Int. Ed., 45, 7824, 10.1002/anie.200603068

Chen, 2003, J. Am. Chem. Soc., 125, 16186, 10.1021/ja038927x

Dumestre, 2004, Science, 303, 821, 10.1126/science.1092641

Sun, 2002, Science, 298, 2176, 10.1126/science.1077229

Peng, 2000, Nature, 404, 59, 10.1038/35003535

Bakshi, 2016, Cryst. Growth Des., 16, 1104, 10.1021/acs.cgd.5b01465

Lee, 2006, J. Am. Chem. Soc., 128, 9326, 10.1021/ja063227o

Milliron, 2004, Nature, 430, 190, 10.1038/nature02695

Lee, 2010, J. Mater. Chem., 20, 3791, 10.1039/b921857b

Jia, 2016, Adv. Mater., 28, 9532, 10.1002/adma.201602912

Jiang, 2018, Chem, 4, 194, 10.1016/j.chempr.2018.01.013

Zhang, 2018, Chem, 4, 285, 10.1016/j.chempr.2017.12.005

Jiang, 2017, Chem, 3, 950, 10.1016/j.chempr.2017.09.014

Gong, 2009, Science, 323, 760, 10.1126/science.1168049

Liang, 2012, Angew. Chem., Int. Ed., 51, 11496, 10.1002/anie.201206720

Meng, 2014, J. Am. Chem. Soc., 136, 13554, 10.1021/ja507463w

Waki, 2014, Energy Environ. Sci., 7, 1950, 10.1039/C3EE43743D

Wu, 2011, Science, 332, 443, 10.1126/science.1200832

Zhang, 2015, Nat. Nanotechnol., 10, 444, 10.1038/nnano.2015.48

Zhang, 2019, Small Methods, 1800406, 10.1002/smtd.201800406

Chung, 2017, Science, 357, 479, 10.1126/science.aan2255

Zhao, 2015, Adv. Mater., 27, 6834, 10.1002/adma.201503211

Wang, 2018, Nat. Rev. Chem., 2, 65, 10.1038/s41570-018-0010-1

Zhao, 2016, ACS Catal., 6, 1553, 10.1021/acscatal.5b02731

Chen, 2017, Angew. Chem., Int. Ed., 56, 610, 10.1002/anie.201610119

Gilbert, 2004, Science, 305, 651, 10.1126/science.1098454

Medasani, 2009, Surf. Sci., 603, 2042, 10.1016/j.susc.2009.03.025

Luo, 2017, Nat. Rev. Mater., 2, 17059, 10.1038/natrevmats.2017.59

Grimaud, 2013, Nat. Commun., 4, 2439, 10.1038/ncomms3439

Wang, 2016, Science, 354, 1031, 10.1126/science.aaf7680

Petrie, 2016, J. Am. Chem. Soc., 138, 2488, 10.1021/jacs.5b11713

Petrie, 2016, J. Am. Chem. Soc., 138, 7252, 10.1021/jacs.6b03520

Stoerzinger, 2015, J. Phys. Chem. Lett., 6, 487, 10.1021/jz502692a

Khorshidi, 2018, Nat. Catal., 1, 263, 10.1038/s41929-018-0054-0

Wang, 2016, ACS Appl. Mater. Interfaces, 8, 13348, 10.1021/acsami.5b12803

Xu, 2016, Sci. Rep., 6, 33590, 10.1038/srep33590

Zang, 2016, Nano Res., 9, 2123, 10.1007/s12274-016-1102-1

Zeng, 2016, Adv. Funct. Mater., 26, 4397, 10.1002/adfm.201600636

Zhu, 2016, ACS Catal., 6, 6335, 10.1021/acscatal.6b01503

Han, 2017, Nano Energy, 31, 541, 10.1016/j.nanoen.2016.12.008

Li, 2017, Carbon, 111, 813, 10.1016/j.carbon.2016.10.057

Su, 2017, Adv. Energy Mater., 7, 1602420, 10.1002/aenm.201602420

Wang, 2017, ACS Appl. Mater. Interfaces, 9, 5213, 10.1021/acsami.6b12197

Wang, 2017, Adv. Energy Mater., 7, 1700467, 10.1002/aenm.201700467

Bu, 2018, Small, 14, 1802767, 10.1002/smll.201802767

Liu, 2018, Angew. Chem., Int. Ed., 57, 16166, 10.1002/anie.201809009

Mahmood, 2018, Small, 14, 1803500, 10.1002/smll.201803500

Fu, 2016, Nano Lett., 16, 6516, 10.1021/acs.nanolett.6b03133

Lee, 2015, ChemSusChem, 8, 3129, 10.1002/cssc.201500609

Shao, 2019, Adv. Funct. Mater., 29, 1806419, 10.1002/adfm.201806419

Markovic, 2013, Nat. Mater., 12, 101, 10.1038/nmat3554

Stamenkovic, 2016, Nat. Mater., 16, 57, 10.1038/nmat4738

Liu, 2015, Angew. Chem., Int. Ed., 54, 9654, 10.1002/anie.201503612

Gong, 2015, Nano Res., 8, 23, 10.1007/s12274-014-0591-z

Nam, 2018, Adv. Mater., 30, 1803372, 10.1002/adma.201803372

Wu, 2015, ACS Appl. Mater. Interfaces, 7, 17782, 10.1021/acsami.5b04061

Wan, 2016, J. Mater. Chem. A, 4, 8602, 10.1039/C6TA02150F

Yu, 2017, Adv. Mater., 29, 1602868, 10.1002/adma.201602868

Tian, 2019, Chem. Commun., 55, 1044, 10.1039/C8CC08511K

Lee, 2011, Adv. Energy Mater., 1, 34, 10.1002/aenm.201000010

Doyle, 2015, ChemCatChem, 7, 738, 10.1002/cctc.201402864