Hu, 2018, Nat. Mater., 17, 480, 10.1038/s41563-018-0090-9
Wang, 2019, Joule, 3, 1289, 10.1016/j.joule.2019.02.012
Wang, 2018, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z
Yi, 2018, Energy Environ. Sci., 11, 3075, 10.1039/C8EE01991F
Xu, 2012, Angew. Chem., Int. Ed., 124, 957, 10.1002/ange.201106307
Hardin, 2013, J. Phys. Chem. Lett., 4, 1254, 10.1021/jz400595z
Alfaruqi, 2015, Chem. Mater., 27, 3609, 10.1021/cm504717p
Lee, 2016, Nano Lett., 16, 1794, 10.1021/acs.nanolett.5b04788
Mainar, 2016, Int. J. Energy Res., 40, 1032, 10.1002/er.3499
Zhang, 2016, J. Am. Chem. Soc., 138, 12894, 10.1021/jacs.6b05958
Fu, 2017, Adv. Mater., 29, 1604685, 10.1002/adma.201604685
Gu, 2017, J. Mater. Chem. A, 5, 7651, 10.1039/C7TA01693J
Li, 2014, Chem. Soc. Rev., 43, 5257, 10.1039/C4CS00015C
Davari, 2018, Sustainable Energy Fuels, 2, 39, 10.1039/C7SE00413C
Yoo, 2014, Mater. Today, 17, 110, 10.1016/j.mattod.2014.02.014
Stamm, 2017, J. Power Source, 360, 136, 10.1016/j.jpowsour.2017.05.073
Seh, 2017, Science, 355, eaad4998, 10.1126/science.aad4998
Chakkaravarthy, 1981, J. Power Source, 6, 203, 10.1016/0378-7753(81)80027-4
Goldstein, 1993, IEEE Aero. Electronic Sys. Mag., 8, 34, 10.1109/62.242061
Goldstein, 1999, J. Power Source, 80, 171, 10.1016/S0378-7753(98)00260-2
Deiss, 2002, Electrochim. Acta, 47, 3995, 10.1016/S0013-4686(02)00316-X
Zhu, 2003, J. Appl. Electrochem., 33, 29, 10.1023/A:1022986707273
Smedley, 2007, J. Power Source, 165, 897, 10.1016/j.jpowsour.2006.11.076
Parker, 2017, Science, 356, 415, 10.1126/science.aak9991
Kim, 2018, ACS Nano, 12, 11838, 10.1021/acsnano.8b02744
Ma, 2018, ACS Nano, 12, 8597, 10.1021/acsnano.8b04317
Mainar, 2018, J. Energy Storage, 15, 304, 10.1016/j.est.2017.12.004
Tan, 2018, ACS Appl. Mater. Interfaces, 10, 36873, 10.1021/acsami.8b10778
He, 2017, Adv. Energy Mater., 7, 1601920, 10.1002/aenm.201601920
Hu, 2017, ACS Appl. Mater. Interfaces, 9, 42717, 10.1021/acsami.7b13110
Li, 2017, Nano Lett., 17, 156, 10.1021/acs.nanolett.6b03691
Wang, 2018, Adv. Funct. Mater., 28, 1803329, 10.1002/adfm.201803329
Yan, 2017, Adv. Mater., 29, 1606459, 10.1002/adma.201606459
Jiao, 2015, Chem. Soc. Rev., 44, 2060, 10.1039/C4CS00470A
Yi, 2019, Organometallics, 38, 1186, 10.1021/acs.organomet.8b00508
Pei, 2014, Appl. Energy, 128, 315, 10.1016/j.apenergy.2014.04.095
Chen, 2009, Prog. Nat. Sci., 19, 291, 10.1016/j.pnsc.2008.07.014
Akinyele, 2014, Sustain. Energy Technol. Assessments, 8, 74, 10.1016/j.seta.2014.07.004
Toussaint, 2010, ECS Trans., 28, 25, 10.1149/1.3507924
Zakeri, 2015, Renewable Sustainable Energy Rev., 42, 569, 10.1016/j.rser.2014.10.011
Jülch, 2016, Appl. Energy, 183, 1594, 10.1016/j.apenergy.2016.08.165
Wittmaier, 2014, J. Appl. Electrochem., 44, 73, 10.1007/s10800-013-0602-x
J. Dixon , in Energy storage for electric vehicles , 2010 IEEE International Conference on Industrial Technology, 14–17 March 2010, 2010, pp. 20–26
Dunn, 2011, Science, 334, 928, 10.1126/science.1212741
Guo, 2016, J. Mater. Chem. A, 4, 6282, 10.1039/C6TA02030E
Christensen, 2016, J. Phys. Chem. C, 120, 24910, 10.1021/acs.jpcc.6b09141
Huang, 2017, Adv. Energy Mater., 7, 1700544, 10.1002/aenm.201700544
Fan, 2018, ACS Nano, 12, 12369, 10.1021/acsnano.8b06312
Mabayoje, 2016, ACS Energy Lett., 1, 195, 10.1021/acsenergylett.6b00084
Busch, 2016, Nano Energy, 29, 126, 10.1016/j.nanoen.2016.04.011
Meng, 2016, J. Am. Chem. Soc., 138, 10226, 10.1021/jacs.6b05046
Gupta, 2016, Adv. Energy Mater., 6, 1601198, 10.1002/aenm.201601198
Ling, 2016, Nat. Commun., 7, 12876, 10.1038/ncomms12876
Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087
Ma, 2016, Int. J. Hydrogen Energy, 41, 9211, 10.1016/j.ijhydene.2015.12.022
Chen, 2012, Electrochim. Acta, 69, 295, 10.1016/j.electacta.2012.03.001
Chakrapani, 2018, ACS Catal., 8, 1259, 10.1021/acscatal.7b03529
Jung, 2016, Energy Environ. Sci., 9, 176, 10.1039/C5EE03124A
Liu, 2018, Adv. Funct. Mater., 28, 1706675, 10.1002/adfm.201706675
Li, 2017, Adv. Funct. Mater., 27, 1703779, 10.1002/adfm.201703779
Zhong, 2016, NPG Asia Mater., 8, e308, 10.1038/am.2016.132
Zhan, 2015, ACS Appl. Mater. Interfaces, 7, 12930, 10.1021/acsami.5b02670
Wang, 2017, Nano Energy, 40, 382, 10.1016/j.nanoen.2017.08.040
Fan, 2017, Small, 13, 1700099, 10.1002/smll.201700099
Qin, 2018, Chem. Commun., 54, 7693, 10.1039/C8CC03902J
Li, 2018, Adv. Mater., 30, 1705796, 10.1002/adma.201705796
Li, 2016, Energy Environ. Sci., 9, 3079, 10.1039/C6EE02169G
Chai, 2017, Energy Environ. Sci., 10, 1186, 10.1039/C6EE03446B
Liu, 2016, Adv. Mater., 28, 3000, 10.1002/adma.201506112
Maiyalagan, 2014, Nat. Commun., 5, 3949, 10.1038/ncomms4949
Gorlin, 2013, J. Am. Chem. Soc., 135, 8525, 10.1021/ja3104632
Gorlin, 2010, J. Am. Chem. Soc., 132, 13612, 10.1021/ja104587v
Mosa, 2016, J. Mater. Chem. A, 4, 620, 10.1039/C5TA07878D
Paulraj, 2018, Catalysts, 8, 328, 10.3390/catal8080328
Bai, 2018, Adv. Energy Mater., 8, 1802390, 10.1002/aenm.201802390
Cai, 2017, J. Mater. Chem. A, 5, 2488, 10.1039/C6TA09615H
Dhavale, 2015, ACS Catal., 5, 1445, 10.1021/cs501571e
Lee, 2014, Adv. Energy Mater., 4, 1301389, 10.1002/aenm.201301389
Lee, 2018, ChemSusChem, 11, 406, 10.1002/cssc.201701832
Lee, 2014, Electrochem. Commun., 43, 109, 10.1016/j.elecom.2014.03.020
Li, 2018, Adv. Mater., 30, 1804653, 10.1002/adma.201804653
Devaguptapu, 2017, ACS Appl. Mater. Interfaces, 9, 44567, 10.1021/acsami.7b16389
Meng, 2014, J. Am. Chem. Soc., 136, 11452, 10.1021/ja505186m
Ma, 2014, J. Am. Chem. Soc., 136, 13925, 10.1021/ja5082553
Park, 2016, Small, 12, 2707, 10.1002/smll.201600051
Huang, 2019, Adv. Mater., 1801430, 10.1002/adma.201801430
Marković, 1994, J. Electroanal. Chem., 377, 249, 10.1016/0022-0728(94)03467-2
Gamboa-Aldeco, 1993, J. Electroanal. Chem., 348, 451, 10.1016/0022-0728(93)80151-7
Wang, 2007, J. Am. Chem. Soc., 129, 6974, 10.1021/ja070440r
Chen, 2007, Angew. Chem., Int. Ed., 119, 4138, 10.1002/ange.200700894
Quan, 2013, Acc. Chem. Res., 46, 191, 10.1021/ar200293n
Yang, 2008, Nature, 453, 638, 10.1038/nature06964
Kuo, 2015, Chem. Commun., 51, 5951, 10.1039/C5CC01152C
Park, 2018, ACS Catal., 8, 9647, 10.1021/acscatal.8b01725
Lee, 2006, Angew. Chem., Int. Ed., 45, 7824, 10.1002/anie.200603068
Chen, 2003, J. Am. Chem. Soc., 125, 16186, 10.1021/ja038927x
Dumestre, 2004, Science, 303, 821, 10.1126/science.1092641
Sun, 2002, Science, 298, 2176, 10.1126/science.1077229
Peng, 2000, Nature, 404, 59, 10.1038/35003535
Bakshi, 2016, Cryst. Growth Des., 16, 1104, 10.1021/acs.cgd.5b01465
Lee, 2006, J. Am. Chem. Soc., 128, 9326, 10.1021/ja063227o
Milliron, 2004, Nature, 430, 190, 10.1038/nature02695
Lee, 2010, J. Mater. Chem., 20, 3791, 10.1039/b921857b
Jia, 2016, Adv. Mater., 28, 9532, 10.1002/adma.201602912
Jiang, 2018, Chem, 4, 194, 10.1016/j.chempr.2018.01.013
Zhang, 2018, Chem, 4, 285, 10.1016/j.chempr.2017.12.005
Jiang, 2017, Chem, 3, 950, 10.1016/j.chempr.2017.09.014
Gong, 2009, Science, 323, 760, 10.1126/science.1168049
Liang, 2012, Angew. Chem., Int. Ed., 51, 11496, 10.1002/anie.201206720
Meng, 2014, J. Am. Chem. Soc., 136, 13554, 10.1021/ja507463w
Waki, 2014, Energy Environ. Sci., 7, 1950, 10.1039/C3EE43743D
Wu, 2011, Science, 332, 443, 10.1126/science.1200832
Zhang, 2015, Nat. Nanotechnol., 10, 444, 10.1038/nnano.2015.48
Zhang, 2019, Small Methods, 1800406, 10.1002/smtd.201800406
Chung, 2017, Science, 357, 479, 10.1126/science.aan2255
Zhao, 2015, Adv. Mater., 27, 6834, 10.1002/adma.201503211
Wang, 2018, Nat. Rev. Chem., 2, 65, 10.1038/s41570-018-0010-1
Zhao, 2016, ACS Catal., 6, 1553, 10.1021/acscatal.5b02731
Chen, 2017, Angew. Chem., Int. Ed., 56, 610, 10.1002/anie.201610119
Gilbert, 2004, Science, 305, 651, 10.1126/science.1098454
Medasani, 2009, Surf. Sci., 603, 2042, 10.1016/j.susc.2009.03.025
Luo, 2017, Nat. Rev. Mater., 2, 17059, 10.1038/natrevmats.2017.59
Grimaud, 2013, Nat. Commun., 4, 2439, 10.1038/ncomms3439
Wang, 2016, Science, 354, 1031, 10.1126/science.aaf7680
Petrie, 2016, J. Am. Chem. Soc., 138, 2488, 10.1021/jacs.5b11713
Petrie, 2016, J. Am. Chem. Soc., 138, 7252, 10.1021/jacs.6b03520
Stoerzinger, 2015, J. Phys. Chem. Lett., 6, 487, 10.1021/jz502692a
Khorshidi, 2018, Nat. Catal., 1, 263, 10.1038/s41929-018-0054-0
Wang, 2016, ACS Appl. Mater. Interfaces, 8, 13348, 10.1021/acsami.5b12803
Xu, 2016, Sci. Rep., 6, 33590, 10.1038/srep33590
Zang, 2016, Nano Res., 9, 2123, 10.1007/s12274-016-1102-1
Zeng, 2016, Adv. Funct. Mater., 26, 4397, 10.1002/adfm.201600636
Zhu, 2016, ACS Catal., 6, 6335, 10.1021/acscatal.6b01503
Han, 2017, Nano Energy, 31, 541, 10.1016/j.nanoen.2016.12.008
Li, 2017, Carbon, 111, 813, 10.1016/j.carbon.2016.10.057
Su, 2017, Adv. Energy Mater., 7, 1602420, 10.1002/aenm.201602420
Wang, 2017, ACS Appl. Mater. Interfaces, 9, 5213, 10.1021/acsami.6b12197
Wang, 2017, Adv. Energy Mater., 7, 1700467, 10.1002/aenm.201700467
Bu, 2018, Small, 14, 1802767, 10.1002/smll.201802767
Liu, 2018, Angew. Chem., Int. Ed., 57, 16166, 10.1002/anie.201809009
Mahmood, 2018, Small, 14, 1803500, 10.1002/smll.201803500
Fu, 2016, Nano Lett., 16, 6516, 10.1021/acs.nanolett.6b03133
Lee, 2015, ChemSusChem, 8, 3129, 10.1002/cssc.201500609
Shao, 2019, Adv. Funct. Mater., 29, 1806419, 10.1002/adfm.201806419
Markovic, 2013, Nat. Mater., 12, 101, 10.1038/nmat3554
Stamenkovic, 2016, Nat. Mater., 16, 57, 10.1038/nmat4738
Liu, 2015, Angew. Chem., Int. Ed., 54, 9654, 10.1002/anie.201503612
Gong, 2015, Nano Res., 8, 23, 10.1007/s12274-014-0591-z
Nam, 2018, Adv. Mater., 30, 1803372, 10.1002/adma.201803372
Wu, 2015, ACS Appl. Mater. Interfaces, 7, 17782, 10.1021/acsami.5b04061
Wan, 2016, J. Mater. Chem. A, 4, 8602, 10.1039/C6TA02150F
Yu, 2017, Adv. Mater., 29, 1602868, 10.1002/adma.201602868
Tian, 2019, Chem. Commun., 55, 1044, 10.1039/C8CC08511K
Lee, 2011, Adv. Energy Mater., 1, 34, 10.1002/aenm.201000010
Doyle, 2015, ChemCatChem, 7, 738, 10.1002/cctc.201402864