Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization

Springer Science and Business Media LLC - Tập 23 - Trang 33-56 - 2009
David Tlalolini1, Yannick Aoustin1, Christine Chevallereau1
1IRCCyN, UMR 6597, École Centrale de Nantes, Université de Nantes, Nantes, France

Tóm tắt

The development of an algorithm of parametric optimization to achieve optimal cyclic gaits in space for a thirteen-link 3D bipedal robot with twelve actuated joints is proposed. The cyclic walking gait is composed of successive single support phases and impulsive impacts with full contact between the sole of the feet and the ground. The evolution of the joints are chosen as spline functions. The parameters to define the spline functions are determined using an optimization under constraints on the dynamic balance, on the ground reactions, on the validity of impact, on the torques, and on the joints velocities. The cost functional considered is represented by the integral of the torques norm. The torques and the constraints are computed at sampling times during one step to evaluate the cost functional for a feasible walking gait. To improve the convergence of the optimization algorithm the explicit analytical gradient of the cost functional with respect to the optimization parameters is calculated using the recursive computation of torques. The algorithm is tested for a bipedal robot whose numerical walking results are presented.

Tài liệu tham khảo

Grishin, A.A., Formal’sky, A.M., Lensky, A.V., Zhitomirsky, S.V.: Dynamic walking of a vehicle with two telescopic legs controlled by two drives. Int. J. Robotics Res. 13(2), 137–147 (1994) Rostami, M., Besonnet, G.: Impactless saggital gait of a biped robot during the single support phase. In: Proceedings of International Conference on Robotics and Automation, pp. 1385–1391 (1998) Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Wiley, New York (1995) Chen, Y.C.: Solving robot trajectory planning problems with uniform cubic b-splines. Optim. Control Appl. Methods 12(4), 247–262 (1991) Luca, A.D., Lanari, L., Oriolo, G.: A sensitive approach to optimal spline robot trajectories. Automatica 27(3), 535–539 (1991) Ostrowski, J.P., Dessai, J.P., Kumar, V.: Optimal gait selection for nonholonomic locomotion systems. Int. J. Robotics Res. 19(3), 225–237 (2000) Dürrbaum, A., Klier, W., Hahn, H.: Comparison of automatic and symbolic differentiation in mathematical modeling and computer simulation of rigid-body. Multibody Syst. Dyn. 7(4), 331–355 (2002) Lee, S.H., Kim, J., Park, F.C., Kim, M., Bobrow, J.E.: Newton-type algorithm for dynamics-based robot movement optimization. IEEE Trans. Robotics Autom. 21(4), 657–667 (2005) Miossec, S., Aoustin, Y.: Dynamical synthesis of a walking cyclic gait for a biped with point feet. Special issue of lecture Notes in Control and Information Sciences, Fast Motions in Biomechanics and Robotics, Dhiel, M., Mombaur, K. (eds.) Springer (2006) Bobrow, J.E., Park, F.C., Sideris, A.: Recent advance on the algorithm optimization of robot motion. Special issue of lecture Notes in Control and Information Sciences, Fast Motions in Biomechanics and Robotics, Dhiel, M., Mombaur, K. (eds.), Springer (2006) Roussel, L., de Wit, C.C., Goswami, A.: Generation of energy optimal complete gait cycles for biped. In: Proc. of the IEEE Conf. on Robotics and Automation, pp. 2036–2042 (2003) Beletskii, V.V., Chudinov, P.S.: Parametric optimization in the problem of bipedal locomotion, Izv. An SSSR. Mekhanika Tverdogo Tela [Mechanics of Solids], no. 1, pp. 25–35 (1977) Bessonnet, G., Chesse, S., Sardin, P.: Generating optimal gait of a human-sized biped robot. In: Proc. of the Fifth International Conference on Climbing and Walking Robots, pp. 717–724 (2002) Channon, P.H., Hopkins, S.H., Pham, D.T.: Derivation of optimal walking motions for a bipedal walking robot. Robotica 2, 165–172 (1992) Zonfrilli, F., Oriolo, M., Nardi, T.: A biped locomotion strategy for the quadruped robot sony ers-210. In: Proc. of the IEEE Conf. on Robotics and Automation, pp. 2768–2774 (2002) Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped. Robotica 19(5), 557–569 (2001) Romero, D.T., Chevallereau, C., Aoustin, Y.: Comparison of different gaits with rotation of the feet for a planar biped. Robotics Auton. Syst. 57(4), 371–383 (2009) Martin, B., Bobrow, J.E.: Minimum effort motions for open chained manipulators with task-dependent end-effort constraints. Int. J. Robotics Res. 18(2), 213–224 (1999) Lo, J., Huang, G., Metaxas, D.: Human motion planning based on recursive dynamics and optimal control techniques. Multibody Syst. Dyn. 8, 433–458 (2002) Saidouni, T., Bessonnet, G.: Generating globally optimised saggital gait cycles of a biped robot. Robotica 21(2), 199–210 (2003) Hu, L., Zhou, C., Sun, Z.: Biped gait optimization using spline function based probability model. In: Proc. of the IEEE Conference on Robotics and Automation, pp. 830–835 (2006) Marot, J.: Contribution à synthese dynamique optimale de la marche, Ph.D. dissertation, Université de Poitiers France, 2007 Bobrow, J.E., Martin, B., Sohl, G., Wang, E.C., Park, F.C., Kim, K.: Optimal robot motions for physical criteria. J. Robotic Syst. 18(12), 785–792 (2001) Garg, D.P., Kumar, M.: Optimization techniques applied to multiple manipulators for path panning and torque minimization. Eng. Appl. Intell. 15, 241–252 (2002) Angeles, J.: Fundamentals of Robotic Mechanical Systems. Springer, New York (1997) Khalil, W., Kleinfinger, J.: A new geometric notation for open and closed loop robots. In: Proc. of the IEEE Conference on Robotics and Automation, pp. 1174–1180 (1985) Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Hermes Sciences Europe (2002) Luh, J.Y.S., Walker, M.W., Paul, R.C.P.: Resolved-acceleration control of mechanical manipulators. IEEE Trans. Autom. Control 25(3), 468–474 (1980) Formal’sky, A.: Locomotion of Anthropomorphic Mechanisms, Nauka, Moscow [In Russian] (1982) Sakaguchi, M., Furushu, A.S.J., Koizumi, E.: A realization of bounce gait in a quadruped robot with articular-joint-type legs. In: Proc. of the IEEE Conference on Robotics and Automation, pp. 697–702 (1995) Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotics mechanism. Trans. ASME, J. Dyn. Syst., Meas. Control 104, 205–211 (1982) Vukobratovic, M., Borovac, B.: Zero moment point-thirty five years of its life. Int. J. Humanoid Robotics 1(1), 157–173 (2004) Vukobratovic, M., Stepanenko, Y.: On the stability of anthropomorphic systems. Math. Biosci. 15, 1–37 (1972) Vukobratovic, M., Borovac, B.: Biped Locomotion-Dynamics, Stability, Control and Application. Springer, Berlin (1990) Ahlberg, N.H., et al.: The Theory of Splines and Their Applications. Academic Press, New York (1967) Tlalolini Romero, D.: Génération de mouvements optimaux de marche pour des robots bipides 3d. PhD thesis, Ecole Centrale de Nantes, Université de Nantes, Nantes, France, Décembre 2008