Design of a Thin-Film Thermoelectric Generator for Low-Power Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Champier, D., Thermoelectric generators: a review of applications, Energy Convers. Manage., 2017, vol. 140, pp. 167–181.
Nguyen, H.T., Nguyen, V.T., and Takahito, O., Flexible thermoelectric power generator with y-type structure using electrochemical deposition process, Appl. Energy, 2018, vol. 210, pp. 467–476.
Deng, F., Qiu, H., Chen, J., Wang, L., and Wang, B., Wearable thermoelectric power generators combined with flexible supercapacitor for low-power human diagnosis devices, IEEE Trans. Ind. Electron., 2017, vol. 64, no. 2, pp. 1477–1485.
Volvenko, S., Dong, Ge, Zavjalov, S., Gruzdev, A., Rashich, A., and Svechnikov, E., Experimental wireless ultra wideband sensor network for data collection, in Proceedings of the Symposium on Progress in Electromagnetics Research, Spring PIERS, May 22–25, 2017.
Antonova, E.E. and Looman, D.C., Finite element for thermoelectric devices in ansys, in Proceedings of the, 24th International Conference on Thermoelectronics ICT'05, Clemson, USA, 2005, pp. 215–218.
Hogblom, O. and Andersson, R., Analysis of thermoelectric generator performance by use of simulations and experiments, J. Electron. Mater., 2014, vol. 43, no. 6, pp. 2247–2254.
Li, W., Paul, M.C., et al., Multiphysics simulations of a thermoelectric generator, Energy Proc., 2015, vol. 75, pp. 633–638.
Geppert, B., Groeneveld, D., Korotkov, A., Loboda, V., and Feldhoff, A., Finite-element simulations of a thermoelectric generator and their experimental validation, Energy Harvest. Syst., 2015, vol. 2, no. 1, pp. 94–105.
Korotkov, A.S., Loboda, V.V., Makarov, S.B., and Feldhoff, A., Modeling thermoelectric generators using the ansys software platform: methodology, practical applications, and prospects, Russ. Microelectron., 2017, vol. 46, no. 2, pp. 131–138.
Korotkov, A., Loboda, V., Feldhoff, A., and Groeneveld, D., Simulation of thermoelectric generators and its results experimental verification, in Proceedings of the IEEE International Symposium on Signals, Circuits and Systems ISSCS 2017, Iasi, Romania, July 13–14, 2017.
Kim, I.H., Choi, S., Seo, W.S., and Cheong, D.I., Preparation and thermoelectric properties of Bi2T2.7Se0.3 nanocomposites, J. Korean Phys. Soc., 2012, vol. 61, pp. 1376–1380.
Lee, G.E., Eum, A.Y., Song, K.M., Kim, I.H., and Lim, Y.S., Preparation and thermoelectric properties of n-type Bi2Te2.7Se0.3, J. Electron. Mater., 2015, vol. 40, pp. 1579–1584.
Kim, J.I., Lee, E.S., Kim, J.Y., and Choi, S.M., Thermoelectric properties of unoxidized graphene/Bi2Te2.7Se0.3 composites synthesized by exfoliation/re-assembly method, Phys. Status Solidi RRL, 2014, vol. 8, pp. 357–361.
Lee, K.H., Kim, H.S., Kim, S.I., Lee, E.S., and Lee, S.M., Enhancement of thermoelectric figure of merit for Bi0.5Sb1.5Te3 by metal nanoparticle decoration, J. Electron. Mater., 2012, vol. 41, pp. 1165–1169.
Blank, V.D., Buga, S.G., Kulbachinskii, V.A., Kytin, V.G., and Medvedev, V.V., Thermoelectric properties of Bi0.5Sb1.5Te3/C60 nanocomposites, Phys. Rev. B, 2012, vol. 86, p. 075 426.
Nguyen, P.K., Lee, K.H., Moon, J., Kim, S.I., and Ahn, K.A., Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance, Nanotechnology, 2012, vol. 23, p. 415 604.
Annapragada, S.R., Salamon, T., Kolodner, P., Hodes, M., and Garimella, S.V., Determination of electrical resistivity in thermoelectric moduls (TEMs) from modul level maesurements, IEEE Trans. Compon., Packaging Manuf. Technol., 2012, vol. 2, no. 4, pp. 668–676.
Snyder, G.J., Lim, J.R., Huang, Chen-Kuo, and Fleurial, J.-P., Thermoelectric microdevice fabricated by a mems-like electrochemical process, Nat. Mater., 2003, vol. 2, pp. 528–531.