Design and flight test of a linear parameter varying flight controller
Tóm tắt
Tài liệu tham khảo
Apkarian, P., Gahinet, P., Becker, G.: Self-scheduled H\(_{\infty }\) control of linear parameter-varying systems: a design example. Automatica 31(9), 1251–1261 (1995). https://doi.org/10.1016/0005-1098(95)00038-x
Bates, D., Postlethwaite, I.: Robust Multivariable Control of Aerospace Systems. Control And Simulation. DUP Science, Singapore (2002)
Bellmann, T., Heindl, J., Hellerer, M., Kuchar, R., Sharma, K., Hirzinger, G.: The DLR robot motion simulator part I: design and setup. In: IEEE International conference on robotics and automation (2011). https://doi.org/10.1109/icra.2011.5979913
Bihrle, W.J.: A handling qualities theory for precise flight path control. Tech. Rep. data, Air Force Flight Dynamics Laboratory, Patterson Air Force Base, Ohio, USA (1966)
Braven, S.d., Verspay, J.: Identification of the servo actuated flight control system of the Cessna Citation II. Tech. Rep. VM-94006, National Aerospace Laboratory NLR (1994)
Brockhaus, R., Alles, W., Luckner, R.: Flugregelung, 3., neu bearb. aufl. edn. Berlin Heidelberg
European Aviation Safety Agency: Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS-25 (2018)
Grondman, F., Looye, G., Kuchar, R.O., Chu, Q.P., Van Kampen, E.J.: Design and flight testing of incremental nonlinear dynamic inversion-based control laws for a passenger aircraft. In: 2018 AIAA Guidance, Navigation, and Control Conference, American Institute of Aeronautics and Astronautics, Kissimmee, Florida (2018). https://doi.org/10.2514/6.2018-0385
Hjartarson, A., Seiler, P., Packard, A.: LPVTools: a toolbox for modeling, analysis, and synthesis of parameter varying control systems. IFAC-Pap. OnLine 48(26), 139–145 (2015). https://doi.org/10.1016/j.ifacol.2015.11.127
van den Hoek, M.A., de Visser, C.C., Pool, D.M.: Identification of a Cessna Citation II Model Based on Flight Test Data. In: Advances in Aerospace Guidance, Navigation and Control, pp. 259–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65283-2_14
Keijzer, T., Looye, G., Chu, Q., Van Kampen, E.J.: Design and Flight Testing of Incremental Backstepping based Control Laws with Angular Accelerometer Feedback. In: 2019 AIAA Guidance, Navigation, and Control Conference. American Institute of Aeronautics and Astronautics, San Diego, California (2019). https://doi.org/10.2514/6.2019-0129
van der Linden, C.A.A.M.: Dasmat-Delft University Aircraft Simulation Model and Analysis Tool: A Matlab, Simulink Environment for Flight Dynamics and Control Analysis (Series 03 - Control and Stimulation , No 03). Delft Univ Pr (1998)
Lu, P., Van Eykeren, L., Van Kampen, E.J., De Visser, C., Chu, Q.: Aircraft inertial measurement unit fault identification with application to real flight data. J. Guid. Control Dyn. 38, 2467–2475 (2015). https://doi.org/10.2514/1.G001247
Muis, A., Oliveira, J., Mulder, J.A.: Development of a flexible flight test instrumentation system. In: 17th SFTE (EC) Symposium. Amsterdam, Netherlands (2006)
van Paassen, M.M., Stroosma, O., Delatour, J.: Dueca - data-driven activation in distributed real-time computation (2000). https://doi.org/10.2514/6.2000-4503
Papageorgiou, G., Glover, K.: Design of a robust gain scheduled controller for the high incidence research model. In: Guidance, Navigation, and Control Conference and Exhibit. American Institute of Aeronautics and Astronautics, Portland, Oregon (1999). https://doi.org/10.2514/6.1999-4276
Papageorgiou, G., Glover, K., D’Mello, G., Patel, Y.: Taking robust LPV control into flight on the VAAC Harrier. In: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), vol. 5, pp. 4558–4564. IEEE, Sydney, Australia (2000). https://doi.org/10.1109/CDC.2001.914633
Pfifer, H.: LPV/LFT Modeling and its Application in Aerospace, 1, aufl edn. Luftfahrt. Dr. Hut, München (2013)
Pfifer, H., Hecker, S.: LPV controller synthesis for a generic missile model. In: 2010 IEEE International Conference on Control Applications, pp. 1838–1843. IEEE, Yokohama, Japan (2010). https://doi.org/10.1109/CCA.2010.5611127
Pollack, T., Looye, G., Van der Linden, F.: Design and flight testing of flight control laws integrating incremental nonlinear dynamic inversion and servo current control. In: 2019 AIAA Guidance, Navigation, and Control Conference. American Institute of Aeronautics and Astronautics, San Diego, California (2019). https://doi.org/10.2514/6.2019-0130
Schug, A.K., Seiler, P., Pfifer, H.: Robustness margins for linear parameter varying systems. AerospaceLab 13 (2017). https://doi.org/10.12762/2017.AL13
Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, 2nd edn. Wiley, Chichester (2005)
US Department of Defense: MIL-F-1797C: Flying Qualities of Piloted Aircraft (1997)
Weiser, C., Ossmann, D., Heller, M.: In-Flight Validation of a Robust Flight Controller Featuring Anti-Windup Compensation. In: 2018 Atmospheric Flight Mechanics Conference. American Institute of Aeronautics and Astronautics, Atlanta, Georgia (2018). https://doi.org/10.2514/6.2018-2982
Weiser, C., Ossmann, D., Kuchar, R.O., Müller, R., Milz, D.M., Looye, G.: Flight testing a linear parameter varying control law on a passenger aircraft. In: AIAA Scitech 2020 Forum. https://doi.org/10.2514/6.2020-1618
Wu, F.: Control of Linear Parameter Varying Systems. PhD Thesis, University of California, Berkely (1995)
Wu, F., Yang, X.H., Packard, A., Becker, G.: Induced L\(_{2}\)-norm control for LPV systems with bounded parameter variation rates. International Journal of Robust and Nonlinear Control 6(9–10), 983–998 (1996). https://doi.org/10.1002/(sici)1099-1239(199611)6:9/10<983::aid-rnc263>3.0.co;2-c
Zaal, P., Pool, D., in ’t Veld, A., Postema, F., Mulder, M., van Paassen, M., Mulder, J.: Design and certification of a fly-by-wire system with minimal impact on the original flight controls. In: AIAA Guidance, Navigation, and Control Conference. American Institute of Aeronautics and Astronautics, Chicago, Illinois (2009). https://doi.org/10.2514/6.2009-5985
