Design and control of a three-fingered tendon-driven robotic hand with active and passive tendons

Autonomous Robots - Tập 36 - Trang 67-78 - 2013
Ryuta Ozawa1, Kazunori Hashirii2, Yohtaro Yoshimura3, Michinori Moriya4, Hiroaki Kobayashi5
1Department of Robotics, Ritsumeikan University, Shiga , Japan
2Research & Development Division, Nabel Co., Ltd., Kyoto, Japan
3Mitsubishi Electric Corporation, Tokyo, Japan
4Construction Machinery Engineering Department, Kubota Corporation, Osaka, Japan
5Department of Mechanical Engineering Informatics, Meiji University, Kanagawa, Japan

Tóm tắt

This paper presents a design of a three-fingered robotic hand driven by active and passive tendons and proposes control methods for this hand. The tendon-driven robotic hand consists of the thumb, the index and the middle fingers. The robotic thumb can move all the joints independently. In contrast, the index and the middle robotic fingers are under-actuated using the combination of active and passive tendons, and move the terminal two joints synchronously, which is one of the important features of the human digits. We present passivity-based impedance and force controllers for tendon-driven robotic fingers and discuss how to combine them for fast and secure grasps. We experimentally validate that the robotic hand moves fast and manipulates an object and demonstrate that the robotic hand grasps objects in diverse ways.

Tài liệu tham khảo

Abdallah, M. E., Platt R. Jr., Hargrave, B., & Permenter, F. (2011). Position control of tendon-driven fingers with position controlled actuators. In IEEE international conference on robotics and automation, Saint paul, MN (pp. 2859–2864). Abdallah, M. E., Platt, R, Jr., & Wampler, C. W. (2013). Decoupled torque control of tendon-driven fingers with tension management. The International Journal of Robotics Research, 32(2), 247–258. Arimoto, S. (1996). Control theory of non-linear mechanical systems: A passivity-based and circuit-theoretic approach. Oxford: Oxford University Press. Bae, J. H., Arimoto, S., & Yoshida, M. (2005). Control and dexterity in robotic pinching under linking of movements of joints like human fingers. In Proceedings of the first international conference on complex medical engineering, Takamatsu, Japan (pp. 899–903). Birglen, L., Laliberte, T., & Gosselin, C. (2008). Underactuated robotic hands, Springer tracts in advance robotics (Vol. 40). Berlin: Springer. Bridgwater, L., Ihrke, C., Abdallah, M., Radford, N., Rogers, J., Yayathi, S., Askew, R., & Linn, D. (2012). The robonaut 2 hand. In IEEE international conference on robotics and automation, Saint Paul, MN (pp. 3425–3430). Brown, C. Y. & Asada, H. H. (2007). Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA (pp. 2877–2882). Carrozza, M. C. (2004). The SPRING hand: Development of a self-adaptive prosthesis for restoring natural grasping. Autonomous Robots, 16, 125–141. Carrozza, M. C., Cappiello, G., Micera, S., Edin, B. B., Beccai, L., & Cipriani, C. (2006). Design of a cybernetic hand for perception and action. Biological Cybernetics, 95, 629–644. Catalano, M., Grioli, G., Serio, A., Farnioli, E., Pazza, C., & Bicchi, A. (2012). Adaptive synergies for a humanoid robot hand. In IEEE-RAS international conference on humanoid robots, Osaka, Japan (pp. 7–14). Cutkosky, M. R. (1989). On grasp choise, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation, 5(3), 269–279. Darling, W. G., Cole, K. J., & Miller, G. F. (1994). Coordination of index finger movements. Journal of Biomechanics, 27(4), 479–491. Dechev, N., Cleghorn, W., & Naumann, S. (2001). Multiple finger passive adaptive grasp prosthetic hand. Mechanism and Machine Theory, 36, 1157–1173. Fukaya, N., Toyama, S., Asfour, T., & Dillmann, R. (2000). Design of the tuat/karlsruhe humanoid hand. In Proceedings 2000 IEEE/RSJ international conference on intelligent robots and systems (pp. 1754–1759). Grebenstein, M., Chalon, M., Hirzinger, G., & Siegwart, R. (2010). Antagonistically driven finger design for the anthropomorphic DLR hand arm system. In Proceedings of IEEE international conference on intelligent robots and systems, Taipei, Taiwan (pp. 609–616). Hirose, S. & Umetani, Y. (1978). The development of soft gripper for the versatile robothand. Mechanism and Machine Theory, 13, 351–359. Jacobsen, S. C., Wood, J. E., Knutti, D. F., & Biggers, K. B. (1984). The UTAH/M.I.T. dextrous hand: Work in progress. The International Journal of Robotics Research, 3(4), 21–50. Johansson, R. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56, 550–564. Kaneko, K., Harada, K., & Kanehiro, F. (2007). Development of multi-fingered hand for life-size humanoid robots. In Proceedings of IEEE international conference on robotics and automation, Roma, Italy (pp. 913–920). Kawasaki, H., Komatsu, T., & Uchiyama, K. (2002). Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Transactions on Mechatronics, 7(3), 296–303. Kobayashi, H., Hyodo, K., & Ogane, D. (1998). On tendon-driven robotic mechanisms with redundant tendons. The International Journal of Robotics Research, 17(5), 561–571. Liu, H., Butterfass, J., Knoch, S., Meusel, P., & Hirzinger, G. (1999). A new control strategy for DLR’s multisensory articulated hand. IEEE Control Systems Magazine, 15, 105–110. Liu, H., Meusel, P., Seitz, N., Willberg, B., Hirzinger, G., Jin, M. H., et al. (2007). The modular multisensory DLR-HIT-hand. Mechanism and Machine Theory, 42, 612–625. Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., & Melchiorri, C. (2005). Development of ub hand 3: Early results. In Proceedings of IEEE international conference on robotics and automation, Barcelona, Spain (pp. 4488–4493). Ma, S., Hirose, S., & Yashinada, H. (1993). Design and experiments for a coupled tendon-driven manipulator. IEEE Control Systems Magazine, 13, 30–36. Mason, M. T. & Salisbury, J. K. (1985). Robot hands and the mechanics of manipulation. Cambridge: The MIT Press. Mouri, T., Endo, T., & Kawasaki, H. (2011). Review of gifu hand and its application. Journal of Mechanics, 39, 210–228. Niikura, R., Kunugi, N., & Koganezawa, K. (2011). Developement of artificial finger using the double planetary gear system. In Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, Budapest, Hungary (pp. 481–486). Ozawa, R., Arimoto, S., Nakamura, S., & Bae, J. H. (2005). Control of an object with parallel surfaces by a pair of finger robots without object sensing. IEEE Transactions on Robotics, 21(5), 965–976. Ozawa, R., Hashirii, K., & Kobayashi, H. (2009). Design and control of underactuated tendon-driven mechanisms. In: Proceedings of IEEE international conference on robotics and automation, Kobe, Japan (pp. 1522–1527). Ozawa, R. & Moriya, M. (2010). Effects of elasticity on an under-actuated tendon-driven robotic finger. In Proceedings of IEEE international conference on robotics and biomimmetics, Tianjin, China (pp. 891–896). Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. The Journal of Neuroscience, 18(23), 10105–10115. Suzuki, T., Koinuma, M., & Nakamura, Y. (1996). Chaos and nonlinear control of nonholonmic free-joint manipulator. In Proceedings of the IEEE international conference on robotics and automation (pp. 2668–2675).