Deregulation of transcription factors controlling intestinal epithelial cell differentiation; a predisposing factor for reduced enteroendocrine cell number in morbidly obese individuals

Scientific Reports - Tập 7 Số 1
Bettina K. Wölnerhanssen1, Andrew W. Moran2, Galina Burdyga2, Anne Christin Meyer‐Gerspach3, Ralph Peterli4, Markus G. Manz5, Miriam Thumshirn5, Kristian Daly2, Christoph Beglinger6, Soraya P. Shirazi‐Beechey2
1Department of Clinical Research, St. Claraspital Basel, 4058, Basel, Switzerland
2Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, L69 7ZB, United Kingdom
3Department of Biomedicine, University Hospital Basel, 4056, Basel, Switzerland
4Department of Surgery, St. Claraspital Basel, 4058, Basel, Switzerland
5Department of Gastroenterology, St. Claraspital Basel, 4058, Basel, Switzerland
6Department of Gastroenterology, University Hospital Basel, 4056, Basel, Switzerland

Tóm tắt

AbstractMorbidly obese patients exhibit impaired secretion of gut hormones that may contribute to the development of obesity. After bariatric surgery there is a dramatic increase in gut hormone release. In this study, gastric and duodenal tissues were endoscopically collected from lean, and morbidly obese subjects before and 3 months after laparoscopic sleeve gastrectomy (LSG). Tissue morphology, abundance of chromogranin A, gut hormones, α-defensin, mucin 2, Na+/glucose co-transporter 1 (SGLT1) and transcription factors, Hes1, HATH1, NeuroD1, and Ngn3, were determined. In obese patients, the total number of enteroendocrine cells (EEC) and EECs containing gut hormones were significantly reduced in the stomach and duodenum, compared to lean, and returned to normality post-LSG. No changes in villus height/crypt depth were observed. A significant increase in mucin 2 and SGLT1 expression was detected in the obese duodenum. Expression levels of transcription factors required for differentiation of absorptive and secretory cell lineages were altered. We propose that in obesity, there is deregulation in differentiation of intestinal epithelial cell lineages that may influence the levels of released gut hormones. Post-LSG cellular differentiation profile is restored. An understanding of molecular mechanisms controlling epithelial cell differentiation in the obese intestine assists in the development of non-invasive therapeutic strategies.

Từ khóa


Tài liệu tham khảo

Murphy, K. G. & Bloom, S. R. Gut hormones and the regulation of energy homeostasis. Nature 444(7121), 854–859 (2006).

Shirazi-Beechey, S. P., Daly, K., Al-Rammahi, M., Moran, A. W. & Bravo, D. Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing. Br. J. Nutr. 111(Suppl 1), S8–15 (2014).

Rehfeld, J. F. A centenary of gastrointestinal endocrinology. Horm. Metab. Res. 36, 735–41 (2004).

Helander, H. F. & Fändriks, L. The enteroendocrine “letter cells”- time for a new nomenclature? Scand. J. Gastroenterol. 47, 3–12 (2012).

Elliott, R. M. et al. Glucagon-like peptide-1 (7–36) amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J. Endocrinol. 138, 159–166 (1993).

Liddle, R. A. Cholecystokinin cells. Annu. Rev. Physiol. 59, 221–242 (1997).

Spreckley, E. & Murphy, K. G. The L-Cell in Nutritional Sensing and the Regulation of Appetite. Front. Nutr. 2, 23 (2015).

Steinert, R. E. et al. The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin. Nutr. 30(4), 524–32 (2011).

De Silva, A. & Bloom, S. R. Gut Hormones and Appetite Control: A Focus on PYY and GLP-1 as Therapeutic Targets in Obesity. Gut Liver 6(1), 10–20 (2012).

Holst, J. J. Enteroendocrine secretion of gut hormones in diabetes, obesity and after bariatric surgery. Curr. Opin. Pharmacol. 13(6), 983–8 (2013).

Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

Wren, A. M. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992 (2011).

Vancleef, L. et al. Chemosensory signaling pathways involved in sensing of amino acids by the ghrelin cell. Sci. Rep. 5, 15725 (2015).

Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am. J. Anat. 141(4), 537–61 (1974).

Shirazi-Beechey, S. P. Molecular Biology of intestinal glucose transport. Nutr. Res. Rev. 8, 27–41 (1995).

Noah, T. K., Donahue, B. & Shroyer, N. F. Intestinal development and differentiation. Exp. Cell Res. 317(19), 2702–10 (2011).

Simms, L. A. et al. Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 57(7), 903–10 (2008).

Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nat. Genet. 24(1), 36–44 (2000).

Li, H. J., Ray, S. K., Singh, N. K., Johnston, B. & Leiter, A. B. Basic helix-loop-helix transcription factors and enteroendocrine cell differentiation. Diabetes. Obes. Metab. 13(Suppl 1), 5–12 (2011).

Shroyer, N. F., Wallis, D., Venken, K. J., Bellen, H. J. & Zoghbi, H. Y. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev. 19(20), 2412–7 (2005).

Peterli, R. et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes. Surg. 22(5), 740–8 (2012).

Panteliou, E. & Miras, A. D. What is the role of bariatric surgery in the management of obesity? Climacteric 1–6, doi:10.1080/13697137.2017.1262638 (2017)

Buchwald, H. & Oien, D. M. Metabolic/Bariatric surgery worldwide 2011. Obes Surg 23, 427–436 (2013).

Peterli, R. et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann. Surg. 250, 234–241 (2009).

Peterli, R. et al. Early Results of the Swiss Multicentre Bypass or Sleeve Study (SM-BOSS): A prospective randomized trial comparing laparoscopic Sleeve Gastrectomy and Roux-Y-Gastric Bypass. Ann. Surg. 258, 690–694 (2013).

Melissas, J. et al. Alterations of Global Gastrointestinal Motility After Sleeve Gastrectomy: A Prospective Study. Ann. Surg. 258, 976–982 (2013).

Dimitriadis, E. et al. Alterations in gut hormones after laparoscopic sleeve gastrectomy: a prospective clinical and laboratory investigational study. Ann. Surg. 257, 647–654 (2013).

Ranganath, L. R. et al. Attenuated GLP-1 secretion in obesity: cause or consequence? Gut 38, 916–919 (1996).

Batterham, R. L. et al. Inhibition of food intake in obese subjects by peptide YY3-36. N. Engl. J. Med. 349, 941–948 (2003).

Lean, M. E. & Malkova, D. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence? Int. J. Obes. (Lond). 40(4), 622–32 (2016).

le Roux, C. W. et al. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J. Clin. Endocrinol. Metab. 90, 1068–1071 (2005).

Baud, G. et al. Bile Diversion in Roux-en-Y Gastric Bypass Modulates Sodium-Dependent Glucose Intestinal Uptake. Cell Metab. 23(3), 547–53 (2016).

Leow, C. C., Polakis, P. & Gao, W. Q. A role for Hath1, a bHLH transcription factor, in colon adenocarcinoma. Ann. N. Y. Acad. Sci. 1059, 174–83 (2005).

Rubino, F., Schauer, P. R., Kaplan, L. M. & Cummings, D. E. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu. Rev. Med. 61, 393–411 (2010).

Cavin, J. B. et al. Differences in Alimentary Glucose Absorption and Intestinal Disposal of Blood Glucose After Roux-en-Y Gastric Bypass vs Sleeve Gastrectomy. Gastroenterology 150(2), 454–464 e459 (2016).

Schauer, P. R., Mingrone, G., Ikramuddin, S. & Wolfe, B. Clinical Outcomes of Metabolic Surgery: Efficacy of Glycemic Control, Weight Loss, and Remission of Diabetes. Diabetes Care 39(6), 902–11 (2016).

Mumphrey, M. B. et al. Gastrectomy Does Not Cause Hypertrophy and Reprogramming of Intestinal Glucose Metabolism in Rats. Obes. Surg. 25(8), 1468–1473 (2015).

Seeley, R. J., Chambers, A. P. & Sandoval, D. A. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell metab. 21(3), 369–378 (2015).

Shirazi-Beechey, S. P. et al. Preparation and properties of brush-border membrane vesicles from human small intestine. Gastroenterology 98(3), 676–85 (1990).

Dyer, J., Hosie, K. B. & Shirazi-Beechey, S. P. Nutrient regulation of human intestinal sugar transporter (SGLT1) expression. Gut 41(1), 56–9 (1997).

Margolskee, R. F. et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+ -glucose cotransporter 1. Proc. Natl. Acad. Sci. USA 104(38), 15075–80 (2007).

Shirazi-Beechey, S. P., Moran, A. W., Batchelor, D. J., Daly, K. & Al-Rammahi, M. Glucose sensing and signalling; regulation of intestinal glucose transport. Proc. Nutr. Soc. 70(2), 185–93 (2011).

Gorboulev, V. et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 87–196 (2012).

Dyer, J., Wood, I. S., Palejwala, A., Ellis, A. & Shirazi-Beechey, S. P. Expression of monosaccharide transporters in intestine of diabetic humans. Am. J. Physiol. Gastrointest. Liver. Physiol. 282(2), G241–8 (2002).

Fedorak, R. N., Cheeseman, C. I., Thomson, A. B. & Porter, V. M. Altered glucose carrier expression: mechanism of intestinal adaptation during streptozocin-induced diabetes in rats. Am. J. Physiol. 261(4 Pt 1), G585–91 (1991).

Dyer, J. et al. Changes in the levels of intestinal Na+/glucose co-transporter (SGLT1) in experimental diabetes. Biochem. Soc. Trans. 25(3), 479S (1997).

Osswald, C. et al. Mice without the regulator gene Rsc1A1 exhibit increased Na+ -D-glucose cotransport in small intestine and develop obesity. Mol. Cell Biol. 25(1), 78–87 (2005).

Nguyen, N. Q. et al. Accelerated intestinal glucose absorption in morbidly obese humans: relationship to glucose transporters, incretin hormones, and glycemia. J. Clin. Endocrinol. Metab. 100(3), 968–76 (2015).

Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19(3), 1720–30 (1999).

Becker, S. et al. Bacteria regulate intestinal epithelial cell differentiation factors both in vitro and in vivo. PLoS One 8(2), e55620 (2013).

Giamarellos-Bourboulis, E. et al. Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome. Scand. J. Gastroenterol. 50(9), 1076–87 (2015).

Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457(7228), 480–4 (2009).

Kelly, J. et al. Composition and diversity of mucosa-associated microbiota along the entire length of the pig gastrointestinal tract; dietary influences. Environ. Microbiol. 19(4), 1425–1438 (2017).

Bologna-Molina, R., Damian-Matsumura, P. & Molina-Frechero, N. An easy cell counting method for immunohistochemistry that does not use an image analysis program. Histopathology 59, 786–803 (2011).