Sự hao hụt carbohydrate không cấu trúc của thân hỗ trợ việc giải phóng các nhánh bên khỏi kiểm soát ngọn trong cây con Quercus mongolica

Trees - Tập 36 - Trang 1573-1584 - 2022
Xiaoyi Han1, Xinming Liang1, Sujuan Ma1, Yu Wang1, Xiujun Lu1,2
1College of Forestry, Shenyang Agricultural University, Shenyang, People’s Republic of China
2Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, People’s Republic of China

Tóm tắt

Việc cắt tỉa lặp đi lặp lại đã làm thay đổi phân bố carbohydrate không cấu trúc ở các cơ quan khác nhau của cây con Quercus mongolica. Sự cạn kiệt carbohydrate không cấu trúc ở thân địa phương đã giải phóng các nhánh hoạt động khỏi kiểm soát ngọn. Các carbohydrate không cấu trúc (NSC) được tích trữ (tức là đường và tinh bột) trong cây đóng vai trò quan trọng trong trao đổi chất và sự phát triển, nhưng mối quan hệ của chúng với kiến trúc thực vật vẫn chưa được hiểu rõ. Sòi Mông Cổ (Quercus mongolica) là một loại gỗ quý có giá trị kinh tế quan trọng ở miền đông bắc Trung Quốc, nhưng thiếu kiểm soát ngọn trong giai đoạn cây con có thể làm giảm tiềm năng phát triển gỗ chất lượng. Trong nghiên cứu này, chúng tôi đã định lượng ảnh hưởng của việc cắt tỉa lặp lại (RP) lên hình thái, khối lượng sinh học và động lực học NSC trong cây con sòi Mông Cổ. Phương pháp RP đã thúc đẩy sự phát triển của chồi ngọn bằng cách làm tăng chiều dài của đợt đâm chồi thứ hai; tuy nhiên, sự phục hồi nhanh chóng của sự phát triển nhánh bên cho thấy khả năng kiểm soát ngọn không được cải thiện. Phương pháp RP đã thay đổi đáng kể mô hình phân bố dọc theo thân NSC trong các đơn vị tăng trưởng khác nhau (GUs) của thân, với trữ lượng NSC cao hơn ở các phần trên của thân được mong đợi sẽ nâng cao tiềm năng phát triển. Việc lưu trữ tổng hợp NSC của toàn bộ cây con, cùng với sự cạn kiệt tinh bột ở GU1 của thân, chỉ ra rằng cả trạng thái carbohydrate của toàn bộ cây con và chi phí địa phương của tinh bột là lý do để duy trì sự phát triển nhánh hoạt động. Việc định lượng sự biến đổi theo thời gian và không gian trong nồng độ đường và tinh bột ở các mô khác nhau đã cải thiện hiểu biết của chúng tôi về động lực học NSC trong sòi Mông Cổ, tiết lộ những mối quan hệ tiềm năng giữa trạng thái carbohydrate và sự thống trị ngọn ở cây.

Từ khóa

#Quercus mongolica #carbohydrate không cấu trúc #cắt tỉa lặp lại #sự phát triển của nhánh #động lực học NSC

Tài liệu tham khảo

Barbier FF, Péron T, Lecerf M, Perez-Garcia MD, Barrière Q, Rolčík J, Boutet-Mercey S, Citerne S, Lemoine R, Porcheron B, Roman H, Leduc N, Le Gourrierec J, Bertheloot J, Sakr S (2015) Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida. J Exp Bot 66:2569–2582. https://doi.org/10.1093/jxb/erv047 Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA (2019) An Update on the Signals Controlling Shoot Branching. Trends Plant Sci 24:220–236. https://doi.org/10.1016/j.tplants.2018.12.001 Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407. https://doi.org/10.1093/aob/mcl260 Bazot S, Barthes L, Blanot D, Fresneau C (2013) Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages. Trees 27:1023–1034. https://doi.org/10.1007/s00468-013-0853-5 Bertheloot J, Barbier F, Boudon F, Perez-Garcia MD, Péron T, Citerne S, Dun E, Beveridge C, Godin C, Sakr S (2020) Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth. New Phytol 225:866–879. https://doi.org/10.1111/nph.16201 Bonhomme M, Peuch M, Ameglio T, Rageau R, Guilliot A, Decourteix M, Alves G, Sakr S, Lacointe A (2010) Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiol 30:89–102. https://doi.org/10.1093/treephys/tpp103 Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and arabidopsis. Plant Physiol 150:482–493. https://doi.org/10.1104/pp.108.134783 Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6:18–28. https://doi.org/10.1093/mp/sss130 Brewer PB, Dun EA, Gui R, Mason MG, Beveridge CA (2015) Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol 168:1820–1829. https://doi.org/10.1104/pp.15.00014 Carbone MS, Trumbore SE (2007) Contribution of new photosynthetic assimilates to respiration by perennial grasses and shrubs: residence times and allocation patterns. New Phytol 176:124–135. https://doi.org/10.1111/j.1469-8137.2007.02153.x Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, Schaberg PG, Xu X, Richardson AD (2013) Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytol 200:1145–1155. https://doi.org/10.1111/nph.12448 Chaar H, Colin F, Collet C (1997) Effects of environmental factors on the shoot development of Quercus petraea seedlings A methodological approach. For Ecol Manage 97:119–131. https://doi.org/10.1016/S0378-1127(97)00093-5 Colin F, Ducousso A, Fontaine F (2010) Epicormics in 13-year-old Quercus petraea: small effect of provenance and large influence of branches and growth unit limits. Ann For Sci 67:312–312. https://doi.org/10.1051/forest/2009118 Collet C, Colin F, Bernier F (1997) Height growth, shoot elongation and branch development of young Quercus petraea grown under different levels of resource availability. Ann Sci For 54:65–81. https://doi.org/10.1051/forest:19970106 Costes E, Crespel L, Denoyes B, Morel P, Demene MN, Lauri PE, Wenden B (2014) Bud structure, position and fate generate various branching patterns along shoots of closely related Rosaceae species: a review. Front Plant Sci 5:666. https://doi.org/10.3389/fpls.2014.00666 Deslauriers A, Fournier MP, Cartenì F, Mackay J (2019) Phenological shifts in conifer species stressed by spruce budworm defoliation. Tree Physiol 39:590–605. https://doi.org/10.1093/treephys/tpy135 Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014) Nonstructural carbon in woody plants. Annu Rev Plant Biol 65:667–687. https://doi.org/10.1146/annurev-arplant-050213-040054 Fichtner F, Barbier FF, Feil R, Watanabe M, Annunziata MG, Chabikwa TG, Höfgen R, Stitt M, Beveridge CA, Lunn JE (2017) Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). Plant J 92:611–623. https://doi.org/10.1111/tpj.13705 Furet PM, Lothier J, Demotes-Mainard S, Travier S, Henry C, Guérin V, Vian A (2014) Light and nitrogen nutrition regulate apical control in Rosa hybrida L. J Plant Physiol 171:7–13. https://doi.org/10.1016/j.jplph.2013.10.008 Furze ME, Huggett BA, Aubrecht DM, Stolz CD, Carbone MS, Richardson AD (2019) Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytol 221:1466–1477. https://doi.org/10.1111/nph.15462 Hartmann H, Trumbore S (2016) Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know. New Phytol 211:386–403. https://doi.org/10.1111/nph.13955 Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412. https://doi.org/10.1104/pp.109.137646 Herrera-Ramírez D, Sierra CA, Römermann C, Muhr J, Trumbore S, Silvério D, Brando PM, Hartmann H (2021) Starch and lipid storage strategies in tropical trees relate to growth and mortality. New Phytol 230:139–154. https://doi.org/10.1111/nph.17239 Hollender CA, Dardick C (2015) Molecular basis of angiosperm tree architecture. New Phytol 206:541–556. https://doi.org/10.1111/nph.13204 Kebrom TH (2017) A growing stem inhibits bud outgrowth-the overlooked theory of apical dominance. Front Plant Sci 8:1874. https://doi.org/10.3389/fpls.2017.01874 Kebrom TH, Mullet JE (2015) Photosynthetic leaf area modulates tiller bud outgrowth in sorghum. Plant Cell Environ 38:1471–1478. https://doi.org/10.1111/pce.12500 Kebrom TH, Mullet JE (2016) Transcriptome profiling of tiller buds provides new insights into phyB regulation of tillering and indeterminate growth in sorghum. Plant Physiol 170:2232–2250. https://doi.org/10.1104/pp.16.00014 Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, Spielmeyer W (2012) Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol 160:308–318. https://doi.org/10.1104/pp.112.197954 Kebrom TH, Spielmeyer W, Finnegan EJ (2013) Grasses provide new insights into regulation of shoot branching. Trends Plant Sci 18:41–48. https://doi.org/10.1016/j.tplants.2012.07.001 Klein T, Vitasse Y, Hoch G (2016) Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. Tree Physiol 36:847–855. https://doi.org/10.1093/treephys/tpw030 Li MH, Jiang Y, Wang A, Li X, Zhu W, Yan CF, Du Z, Shi Z, Lei J, Schönbeck L, He P, Yu FH, Wang X (2018) Active summer carbon storage for winter persistence in trees at the cold alpine treeline. Tree Physiol 38:1345–1355. https://doi.org/10.1093/treephys/tpy020 Liu Q, Huang Z, Wang Z, Chen Y, Wen Z, Liu B, Tigabu M (2020) Responses of leaf morphology, NSCs contents and C:N:P stoichiometry of Cunninghamia lanceolata and Schima superba to shading. BMC Plant Biol 20:354. https://doi.org/10.1186/s12870-020-02556-4 Mai K, Williams RA (2019) Response of oak and maple seed germination and seedling growth to different manganese fertilizers in a cultured substratum. Forests 10:547. https://doi.org/10.3390/f10070547 Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci 111:6092–6097. https://doi.org/10.1073/pnas.1322045111 Mathan J, Bhattacharya J, Ranjan A (2016) Enhancing crop yield by optimizing plant developmental features. Development 143:3283–3294. https://doi.org/10.1242/dev.134072 Maurel K, Leite GB, Bonhomme M, Guilliot A, Rageau R, Petel G, Sakr S (2004) Trophic control of bud break in peach (Prunus persica) trees: a possible role of hexoses. Tree Physiol 24:579–588. https://doi.org/10.1093/treephys/24.5.579 Muhr M, Prüfer N, Paulat M, Teichmann T (2016) Knockdown of strigolactone biosynthesis genes in Populus affects BRANCHED1 expression and shoot architecture. New Phytol 212:613–626. https://doi.org/10.1111/nph.14076 Müller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Ann Bot 107:1203–1212. https://doi.org/10.1093/aob/mcr069 Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692. https://doi.org/10.1016/j.tplants.2010.09.008 Pierik R, Testerink C (2014) The art of being flexible: how to escape from shade, salt, and drought. Plant Physiol 166:5–22. https://doi.org/10.1104/pp.114.239160 Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci 106:17431–17436. https://doi.org/10.1073/pnas.0906696106 Quentin AG, Pinkard EA, Ryan MG et al (2015) Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol 35:1146–1165. https://doi.org/10.1093/treephys/tpv073 Rabot A, Henry C, Ben Baaziz K, Mortreau E, Azri W, Lothier J, Hamama L, Boummaza R, Leduc N, Pelleschi-Travier S, Le Gourrierec J, Sakr S (2012) Insight into the role of sugars in bud burst under light in the rose. Plant Cell Physiol 53:1068–1082. https://doi.org/10.1093/pcp/pcs051 Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S (2015) Multiple pathways regulate shoot branching. Front Plant Sci 5:741. https://doi.org/10.3389/fpls.2014.00741 Rebbeck J, Gottschalk K, Scherzer A (2011) Do chestnut, northern red, and white oak germinant seedlings respond similarly to light treatments? Growth and biomass. Can J Forest Res 41:2219–2230. https://doi.org/10.1139/x11-124 Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3:846–851. https://doi.org/10.1093/embo-reports/kvf177 Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu X (2013) Seasonal dynamics and age of stemwood non-structural carbohydrates in temperate forest trees. New Phytol 197:850–861. https://doi.org/10.1111/nph.12042 Richardson AD, Carbone MS, Huggett BA, Furze ME, Czimczik CI, Walker JC, Xu X, Schaberg PG, Murakami P (2015) Distribution and mixing of old and new non-structural carbon in two temperate trees. New Phytol 206:590–597. https://doi.org/10.1111/nph.13273 Roxas AA, Orozco J, Guzmán-Delgado P, Zwieniecki MA (2021) Spring phenology is affected by fall non-structural carbohydrates concentration and winter sugar redistribution in three Mediterranean nut tree species. Tree Physiol 41:1425–1438. https://doi.org/10.1093/treephys/tpab014 Schneider A, Godin C, Boudon F, Demotes-Mainard S, Sakr S, Bertheloot J (2019) Light regulation of axillary bud outgrowth along plant axes: an overview of the roles of sugars and hormones. Front Plant Sci 10:1296. https://doi.org/10.3389/fpls.2019.01296 Shen J, Zhang Y, Ge D, Wang Z, Song W, Gu R, Che G, Cheng Z, Liu R, Zhang X (2019) CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. Proc Natl Acad Sci 116:17105–17114. https://doi.org/10.1073/pnas.1907968116 Singh RK, Bhalerao RP, Maurya JP (2021) When to branch: seasonal control of shoot architecture in trees. FEBS J. https://doi.org/10.1111/febs.16227 Smith MG, Miller RE, Arndt SK, Kasel S, Bennett LT (2018) Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees. Tree Physiol 38:570–581. https://doi.org/10.1093/treephys/tpx141 Tarancón C, González-Grandío E, Oliveros JC, Nicolas M, Cubas P (2017) A conserved carbon starvation response underlies bud dormancy in woody and herbaceous species. Front Plant Sci 8:788. https://doi.org/10.3389/fpls.2017.00788 Teichmann T, Muhr M (2015) Shaping plant architecture. Front Plant Sci 6:233. https://doi.org/10.3389/fpls.2015.00233 Thalmann M, Santelia D (2017) Starch as a determinant of plant fitness under abiotic stress. New Phytol 214:943–951. https://doi.org/10.1111/nph.14491 Tixier A, Sperling O, Orozco J, Lampinen B, Amico Roxas A, Saa S, Earles JM, Zwieniecki MA (2017) Spring bud growth depends on sugar delivery by xylem and water recirculation by phloem Münch flow in Juglans regia. Planta 246:495–508. https://doi.org/10.1007/s00425-017-2707-7 Tixier A, Guzmán-Delgado P, Sperling O, Amico Roxas A, Laca E, Zwieniecki MA (2020) Comparison of phenological traits, growth patterns, and seasonal dynamics of non-structural carbohydrate in Mediterranean tree crop species. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-019-57016-3 Trumbore S, Czimczik CI, Sierra CA, Muhr J, Xu X (2015) Non-structural carbon dynamics and allocation relate to growth rate and leaf habit in California oaks. Tree Physiol 35:1206–1222. https://doi.org/10.1093/treephys/tpv097 Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17:123–129. doi: https://doi.org/10.1016/j.copbio.2006.02.004 Wang B, Smith SM, Li J (2018) Genetic regulation of shoot architecture. Annu Rev Plant Biol 69:437–468. https://doi.org/10.1146/annurev-arplant-042817-040422 Wang J, Zhang H, Gao J, Zhang Y, Liu Y, Tang M (2021) Effects of ectomycorrhizal fungi (Suillus variegatus) on the growth, hydraulic function, and non-structural carbohydrates of Pinus tabulaeformis under drought stress. BMC Plant Biol 21:171. https://doi.org/10.1186/s12870-021-02945-3 Wiley E, Helliker B (2012) A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol 195:285–289. https://doi.org/10.1111/j.1469-8137.2012.04180.x Wiley E, Huepenbecker S, Casper BB, Helliker BR (2013) The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage? Tree Physiol 33:1216–1228. https://doi.org/10.1093/treephys/tpt093 Wiley E, Casper BB, Helliker BR (2017) Recovery following defoliation involves shifts in allocation that favour storage and reproduction over radial growth in black oak. J Ecol 105:412–424. https://doi.org/10.1111/1365-2745.12672 Yang B, Peng C, Zhu Q, Zhou X, Liu W, Duan M, Wang H, Liu Z, Guo X, Wang M (2019) The effects of persistent drought and waterlogging on the dynamics of nonstructural carbohydrates of Robinia pseudoacacia L. seedlings in Northwest China. For Ecosyst 6:1–17. https://doi.org/10.1186/s40663-019-0181-3