Dephasing of Quantum Bits by a Quasi-Static Mesoscopic Environment
Tóm tắt
Tài liệu tham khảo
Loss D., DiVincenzo D. (1998). Phys. Rev. A 57:120
Imamoglu A., Awschalom D.D., Burkard G., DiVincenzo D.P., Loss D., Sherwin M., Small A. (1999). Phys. Rev. Lett. 83:4204
Merkulov I.A., Efros A.L., Rosen M. (2002). Phys. Rev. B 65:205309
Khaetskii A.V., Loss D., Glazman L. (2002). Phys. Rev. Lett. 88:186802, URL http://publish.aps.org/abstract/prl/v88/p186802.
Taylor J.M., Marcus C.M., Lukin M.D. (2003). Phys. Rev. Lett. 90:206803
Johnson A.C., Petta J., Taylor J.M., Lukin M.D., Marcus C.M., Hanson M.P., Gossard A.C. (2005). Nature 435:925
F. H. L. Koppens, J. A. Folk, J. M. Elzerman, R. Hanson, L. H. Willems van , I. T. Vink, H.-P. Tranitz, W. Wegscheider, L. P. Kouwenhoven, and L. M. K. Vandersypen, Science p. 1113719 (2005), URL http://www.sciencemag.org/cgi/content/abstract/1113719v2.
Petta J.R., Johnson A.C., Taylor J.M., Laird E., Yacoby A., Lukin M.D., Marcus C.M. (2005). Science 309:2180
de Sousa R., Das Sarma S. (2003). Phys. Rev. B 67:033301
Coish W.A., Loss D. (2004). Phys. Rev. B 70:195340
Elzerman J.M., Hanson R., van Beveren L.H.W., Witkamp B., Vandersypen L.M.K., Kouwenhoven L.P. (2004). Nature 430:431
Fujisawa T., Tokura Y., Hirayama Y. (2001). Phys. Rev. B. (Rapid Comm.) 63:081304
Golovach V.N., Khaetskii A., Loss D. (2004). Phys. Rev. Lett. 93:016601
Hanson R., Witkamp B., Vandersypen L.M.K., van Beveren L.H.W., Elzerman J.M., Kouwenhoven L.P. (2003). Phys. Rev. Lett. 91:196802
Vion D., Aassime A., Cottet A., Joyez P., Pothier H., Urbina C., Esteve D., Devorett M. (2002). Science 296:886
Pashkin A., Yamamoto T., Astafiev O., Nakamura Y., Averin D., Tsai J. (2003). Nature 421:823
Chiorescu I., Nakamura Y., Harmans C., Mooij J. (2003). Science 299:1869
Martinis J., Nam S., Aumentado J., Urbina C. (2002). Phys. Rev. Lett. 89:117901
Simmonds R., Lang K.M., Hite D.A., Nam S., Pappas D.P., Martinis J.M. (2004). Phys. Rev. Lett. 93:077003
Makhlin Y., Shnirman A. (2004). Phys. Rev. Lett. 92:178301
Falci G., D’Arrigo A., Mastellone A., Paladino E. (2005). Phys. Rev. Lett. 94:167002
Taylor J.M., Imamoglu A., Lukin M.D. (2003). Phys. Rev. Lett. 91:246802
Weissman M.B. (1988). Rev. Mod. Phys. 60:537
D. Klauser, W. A. Coish, and D. Loss, e-print: cond-mat/0510177 (2005).
Coish W.A., Loss D. (2005). Phys. Rev. B 72:125337
X. Hu and S. D. Sarma, e-print: cond-mat/0507725 (2005).
Zurek W.H. (1981). Phys. Rev. D 24:1516
Prokof’ev N.V., Stamp P.C.E. (2000). Reports Prog Phys 63:669
Rose G., Smirnov A.Y. (2001). J. Phys.: Cond. Mat. 13:11027
Zanardi P., Rasetti M. (1997). Phys. Rev. Lett. 79:3306
Viola L., Lloyd S. (1998). Phys. Rev. A 58:2733
The breakdown of the two-level approximation in superconductor-based qubit designs has already been explored in great detail (Burkard et al. Phys. Rev B. 69, 064503 (2004)) and we instead focus on other sources of error due to local spins, charge traps, etc.
Feynman R.P., Vernon F.L. (1963). Ann. Phys. 24:118
Magnus W. (1954). Commun. Pure Appl. Math 7:649
Cottet A., et al. (2001). Macroscopic Quantum Coherence and Quantum Computing. Kluwer/Plenum, New York, p. 111
G. Giedke, J. M. Taylor, D. D’Alessandro, M. D. Lukin, and A. Imamoglu, e-print: quantph/ 0508144 (2005).
J. M. Taylor, J. Petta, A. C. Johnson, A. Yacoby, C. M. Marcus, and M. D. Lukin, (in preparation) (2006).
de Sousa R., Das Sarma S. (2003). Phys. Rev. B 68:115322
W. Yao, R.-B. Liu, and L. J. Sham, e-print: cond-mat/0508441 (2005).
Deng C., Hu X. (2005). Phys. Rev. B 72:165333
Paget D. (1982). Phys. Rev. B 25:4444
G. Teklemariam, E. M. Fortunato, C. C. Lopez, J. Emerson, J. P. Paz, T. F. Havel, and D. G. Cory, e-print: quant-ph/0303115 (2003).
For an arbitrary, quasi-static bath (i.e., not necessary a spin-bath) with a density matrix that is diagonal in the eigenbasis of \(\hat{A}_z\), \(\Phi_{\rm FID} = e^{-i \delta t} \int_{-\infty}^{\infty} d \Lambda \rho(\Lambda) e^{-i \Lambda t}\), demonstrating that Φ FID is exactly the inverse Fourier transform of the bath degree of freedom in this case.
By assuming the bath density matrix is diagonal in the \(\hat{A}_z\) eigenbasis, the result derived (Eqn. 40) in fact is generally true for any bath that is non-singular (ρ sym (ω ≥ Ω) not singular) and satisfies u ≥ 0, not just a spin-bath. However, the spin-bath provides a natural case for \([\hat{H}_B,\hat{A}_z] \simeq 0\), as mentioned in the text.
Well-separated singularities in ρsym can be treated as additional stationary phase integral terms, and for each, corresponding oscillations at the resonance with different time-scales u j will emerge.
Paget D., Lampel G., Sapoval B., Safarov V. (1977). Phys. Rev. B 15:5780
Waugh J., Huber L., Haeberlen U. (1968). Phys. Rev. Lett. 20:180
Kautz R., Martinis J. (1990). Phys. Rev. B 42:9903
Galperin Y.M., Gurevich V.L. (1991). Phys. Rev. B 43:12900
Caldeira A.O., Leggett A.J. (1983). Ann. Phys. 149:347
Chattah A.K., lvarez G.A., Levstein P.R., Cucchietti F.M., Pastawski H.M., Raya J., Hirschinger J. (2003). J. Chem. Phys. 119:7943
Danieli E.P., Pastawski H.M., Álvarez G.A. (2005). Chem. Phys. Lett. 402:88
Facchi P., Tasaki S., Pascazio S., Nakazato H., Tokuse A., Lidar D. (2005). Phys. Rev. A 71:022302
Imamolgu A., Knill E., Tian L., Zoller P. (2003). Phys. Rev. Lett. 91:017402