Dependence of the X-ray Sensitivity of AgGaS2 Single Crystals on Faces (001) and (100) on Dose and Hardness of Radiation
Tóm tắt
The data of X-ray diffraction characteristics of silver thiogallate (AgGaS2) single crystals grown by the Bridgman–Stockbarger (BS) method on the (001) face and chemical transport reactions (CTRs) on the (100) face are presented. The X-ray conductivity coefficient of AgGaS2 at 298 K varies within 0.97–10.63 and 0.22–3.20 min/R for samples grown by the BS and CTR methods, respectively, at an effective radiation hardness of
$${{V}_{a}}$$
= 25 to 50 keV and dose rate
$$E$$
= 0.75–78.05 R/min. The dependence of the stationary X-ray current on the X-ray dose in AgGaS2 single crystals has a power-law character.
Tài liệu tham khảo
Mustafaeva, S.N., Asadov, M.M., and Guseynov, D.T., X-ray dosimetric characteristics of CdIn2S4〈Cu〉 single crystals, Tech. Phys., 2011, vol. 56, no. 1, pp. 139–142. https://doi.org/10.1134/S1063784211010178
Mustafaeva, S.N., Asadov, M.M., and Guseinov, D.T., X-ray dosimetry of copper-doped CdGa2S4 single crystals, J. Semicond. Phys., Quantum Electron. Optoelectron., 2012, vol. 15, no. 4, pp. 358–359.
Mustafaeva, S.N., Asadov, M.M., and Guseinov, D.T., X-ray induced conductivity of CdIn2S4〈Fe〉 crystals, Inorg. Mater., 2013, vol. 49, no. 7, pp. 643–646. https://doi.org/10.1134/S0020168513070121
Mustafaeva, S.N., Asadov, M.M., and Guseinov, D.T., Enhancing roentgensensitivity of gold-doped CdIn2S4 thiospinel for X-ray detection applications, J. Mater., 2015, p. 956013. https://doi.org/10.1155/2015/956013
Mustafaeva, S.N., Asadov, M.M., and Guseinov, D.T., X-ray electric properties of a CdIn2S4 monocrystal, Inorganic Materials: Applied Research, 2010, vol. 1, pp. 293–296.https://doi.org/10.1134/S2075113310040052
Mustafaeva, S.N., Asadov, M.M., and Guseinov, D.T., X-ray dosimetric properties of vapor-grown CdGa2S4 single crystals, Inorg. Mater., 2010, vol. 46, no. 6, pp. 587–589. https://doi.org/10.1134/S002016851006004X
Asadov, M.M. and Mustafaeva, S.N., X-ray dosimetry of an AgGaS2 single crystal, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, pp. 1113–1117. https://doi.org/10.3103/S106287381509004X
Asadov, S.M., Mustafaeva, S.N., and Guseinov, D.T., X-ray dosimetric characteristics of AgGaS2 single crystals grown by chemical vapor transport, Inorg. Mater., 2017, vol. 53, no. 5, pp. 457–461. https://doi.org/10.1134/S0020168517050028
Asadov, S.M., Mustafaeva, S.N., Guseinov, D.T., and Kelbaliev K.I., Dependence of the X-ray dosimetric parameters of AgGaS2xSe2–2x single crystals on their composition, Tech. Phys., 2018, vol. 63, no. 4, pp. 546–550. https://doi.org/10.1134/S1063784218040047
Fan, C.-M., Regulacio, M.D., Ye, C., Lim, S.H., Zheng, Y., Xu, Q.-H., Xu, A.-W., and Han, M.-Y., Colloidal synthesis and photocatalytic properties of orthorhombic AgGaS2 nanocrystals, Chem. Commun., 2014, vol. 50, no. 54, pp. 7128–7131. https://doi.org/10.1039/c4cc01778a
Jang, J.S., Borse, P.H., Lee, J.S., Choi, S.H., and Kim, H.G., Indium induced band gap tailoring in AgGa1–xInxS2 chalcopyrite structure for visible light photocatalysis, J. Chem. Phys., 2008, vol. 128, no. 15, pp. 154717–6. https://doi.org/10.1063/1.2900984
Wu, J., Huang, W., Liu, H., He, Zh.C., Baojun, Z., Shifu, Z., Beijun, L., Yuxing, Z., and Xiaonan, Z., Investigation on thermal properties and crystal growth of nonlinear optical crystal AgGaS2 and AgGaGeS4, Cryst. Growth Des., 2020, pp. 2–49. https://doi.org/10.1021/acs.cgd.0c00018
Zhang, Y., Wang, R., Kang, Z., Qu, Li., Jiang, Y., Gao, J.-Y., Andreev, Y.M., Lanskii, G.V., Kokh, K.A., Morozov, A.N., Shaiduko, A.V., and Zuev, V.V., AgGaS2- and Al doped GaSe crystals for IR applications, Opt. Commun., 2011, vol. 284, pp. 1677–1681. https://doi.org/10.1016/j.optcom.2010.11.067
Route, R.H., Felgelson, R.S., Raumakers, R.J., and Choy, M.M., Elimination of optical scattering defects in AgGaS2 and AgGaSe2, J. Cryst. Growth, 1976, vol. 33, no. 2, pp. 239–245. https://doi.org/10.1016/0022-0248(76)90049-X
Fan, Y.X., Eckardt, R.C., Byer, R.L., Route, R.K., and Feigelson, R.S., AgGaS2 infrared parametric oscillator, Appl. Phys. Lett., 1984, vol. 45, no. 4, pp. 313–315. https://doi.org/10.1063/1.95275
Was, G.S., Fundamentals of Radiation Materials Science. Metals and Alloys, New York: Springer Science, 2017, 2nd ed.
Abrahams, S.C. and Bernstein, J.L., Crystal structure of piezoelectric nonlinear-optic AgGaS2, J. Chem. Phys., 1973, vol. 59, no. 4, pp. 1625–1629. https://doi.org/10.1063/1.1680242
Marceddu, M., Anedda, A., Carbonaro, C.M., Chiriu, D., Corpino, R., and Ricci, P.C., Donor-acceptor pairs and excitons recombinations in AgGaS2, Appl. Surf. Sci., 2006, vol. 253, pp. 300–305. https://doi.org/10.1016/j.apsusc.2006.06.002
Noda, Y., Kurasawa, T., Sugai, N., and Furukawa, Y., Growth of AgGaS2 single crystals by chemical transport reaction, J. Cryst. Growth, 1990, vol. 99, pp. 757–761. https://doi.org/10.1016/S0022-0248(08)80021-8
Noda, Y., Kurasawa, T., and Furukawa, Y., Growth of AgGaS2 single crystals by chemical transport with halogen, J. Cryst. Growth, 1991, vol. 115, pp. 802–806. https://doi.org/10.1016/0022-0248(91)90849-Z
Prabukanthan, P. and Dhanasekaran, R., Stoichiometric single crystal growth of AgGaS2 by iodine transport method and characterization, Cryst. Res. Technol., 2008, vol. 43, no. 12, pp. 1292–1296. https://doi.org/10.1002/crat.200800055
Mochizuki, K. and Masumoto, K., Melting point of AgGaS2, J. Cryst. Growth, 1989, vol. 98, pp. 855–856. https://doi.org/10.1016/0022-0248(89)90329-1
Schmidt, P., Binnewies, M., Glaum, R., and Schmidt, M., Chemical vapor transport reactions—Methods, materials, modeling, in Advanced Topics on Crystal Growth, Sukarno, O.F., Ed., Rijeka: InTech Open, 2013, Chap. 9, pp. 227–305. https://doi.org/10.5772/55547
Binnewies, M., Schmidt, M., and Schmidt, P., Chemical vapor transport reactions—Arguments for choosing a suitable transport agent, Z. Anorg. Allgem. Chem., 2017, vol. 643, pp. 1295–1311. https://doi.org/10.1002/zaac.201700055
Purohit, M., Meena, S.K., Alpa Dashora, A., and Ahuj, B.L., Bandgap engineering of AgGaS2 for optoelectronic devices: First-principles computational technique, in Intelligent Computing Techniques for Smart Energy Systems, Proceedings of ICTSES 2018, Kalam, A., Niazi, K.R., Soni, A., Siddiqui, S.A., and Mundra, A., Eds., Singapore: Springer Nature, 2020, pp. 67–74.