Dependence of H2O2 Formation by Rat Heart Mitochondria on Substrate Availability and Donor Age

Journal of bioenergetics - Tập 29 - Trang 89-95 - 1997
Richard G. Hansford1, Barbara A. Hogue1, Vida Mildaziene2
1National Institute on Aging, Baltimore
2Institute for Biomedical Research, Kaunas Medical Academy, Kaunas, Lithuania

Tóm tắt

We have examined the substrate specificity and inhibitor sensitivity of H2O2 formation by rat heart mitochondria. Active H2O2 production requires both a high fractional reduction of Complex I (indexed by NADH/NAD+ + NADH ratio) and a high membrane potential, ΔΨ. These conditions are achieved with supraphysiological concentrations of succinate. With physiological concentrations of NAD-linked substrates, rates of H2O2 formation are much lower (less than 0.1% of respiratory chain electron flux) but may be stimulated by the Complex III inhibitor antimycin A, but not by myxothiazol. Addition of Mn2+ to give 10 nmol/mg of mitochondrial protein enhances H2O2 production with all substrate combinations, possibly by repleting mitochondrial superoxide dismutase with this cation. Contrary to previously published work, no increased activity of H2O2 production was found with heart mitochondria from senescent (24 month) rats, relative to young adults (6 month).

Tài liệu tham khảo

Agarwal, S., and Sohal, R. J. (1994). Proc. Natl. Acad. Sci. USA 91, 12332–12335.

Ames, B. N., Shigenaga, M. K, and Hagen, T. M. (1993). Proc. Natl. Acad. Sci. USA 90, 7915–7922.

Barja, G., Cadenas, S., Rojas, C., Pérez-Campo, R., and López-Torres, M. (1994). Free Rad. Res. 21, 317–328.

Boveris, A. (1984). Methods Enzymol. 105, 429–435.

Boveris, A., and Chance, B. (1973). Biochem. J. 134, 707–716.

Boveris, A., Oshino, N., and Chance, B. (1972). Biochem. J. 128, 617–630.

Boveris, A., Cadenas, E., and Stoppani, A. O. M. (1976). Biochem. J. 156, 435–444.

Brown, M. D., and Wallace, D. C. (1994). J. Bioenerg. Biomembr. 26, 273–290.

Chance, B., Sies, H., and Boveris, A. (1979). Physiol. Rev. 59, 527–603.

Cutler, R. G. (1984). In Free Radicals in Molecular Biology, Aging, and Disease (Armstrong, D., et al., eds.) Raven Press, pp. 235–266.

Giulivi, C., Boveris, A., and Cadenas, E. (1995). Arch. Biochem. Biophys. 316, 909–916.

Gunter, T. E., and Pfeiffer, D. R. (1990). Am. J. Physiol. 258, C755–C786.

Hansford, R. G. (1978). Biochem. J. 170, 285–295.

Hyslop, P. A., and Sklar, L. A. (1984). Anal. Biochem. 141, 280–286.

Kamo, N., Muragatsu, M., Hongoh, R., and Kotabake, Y. J. (1979). J. Membr. Biol. 49, 105–121.

Lewandowski, E. D., Doumen, C., White, L. T., LaNoue, K. F., Damico, L. A., and Yu, X. (1996). Magn. Reson. Med. 35, 149–154.

Linnane, A. W., Marzuki, S., Ozawa, T., and Tanaka, M. (1989). Lancet 25, 642–645.

McCord, J. M., and Fridovich, I. (1969). J. Biol. Chem. 244, 6049–6055.

Mecocci, P., MacGarvey, U., Kaufman, A. E., Koontz, D., Shoffner, J. M., Wallace, D. C., and Beal, M. F. (1993). Ann. Neurol. 34, 609–616.

Miquel, J., Economos, A. C., Fleming, J., and Johnson, J. E., Jr. (1980). Exp. Gerontol. 15, 575–591.

Nohl, H., and Hegner, D. (1978). Eur. J. Biochem. 82, 563–567.

Shigenaga, M. K., Hagen, T. M., and Ames, B. N. (1994). Proc. Natl. Acad. Sci. USA 91, 10771–10778.

Sohal, R. S. (1991). Mech. Age. Dev. 60, 189–198.

Sohal, R. S., Ku, H.-H., Agarwal, S., Forster, M. J., and Lal, H. (1994). Mech. Age. Dev. 74, 121–131.

Turrens, J. F., and Boveris, A. (1980). Biochem. J. 191, 421–427.

Turrens, J. F., Alexandra, A., and Lehninger, A. L. (1985). Arch. Biochem. Biophys. 237, 408–414.

von Jagow, G., Ljungdahl, P. O., Graf, P. Ohnishi, T., and Trumpower, B. L. (1984). J. Biol. Chem. 259, 6318–6326.