Dental implants from functionally graded materials

Journal of Biomedical Materials Research - Part A - Tập 101 Số 10 - Trang 3046-3057 - 2013
Mehdi Mehrali1, Farid Seyed Shirazi1, Mohammad Mehrali2, Hendrik Simon Cornelis Metselaar2, Nahrizul Adib Kadri1, Noor Azuan Abu Osman1
1Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
2Department of Mechanical Engineering and Center of advanced Material University of Malaya Kuala Lumpur 50603 Malaysia

Tóm tắt

Functionally graded material (FGM) is a heterogeneous composite material including a number of constituents that exhibit a compositional gradient from one surface of the material to the other subsequently, resulting in a material with continuously varying properties in the thickness direction. FGMs are gaining attention for biomedical applications, especially for implants, owing to their reported superior composition. Dental implants can be functionally graded to create an optimized mechanical behavior and achieve the intended biocompatibility and osseointegration improvement. This review presents a comprehensive summary of biomaterials and manufacturing techniques researchers employ throughout the world. Generally, FGM and FGM porous biomaterials are more difficult to fabricate than uniform or homogenous biomaterials. Therefore, our discussion is intended to give the readers about successful and obstacles fabrication of FGM and porous FGM in dental implants that will bring state‐of‐the‐art technology to the bedside and develop quality of life and present standards of care. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 3046‐3057, 2013.

Từ khóa


Tài liệu tham khảo

10.1002/jor.20305

10.1016/j.jmbbm.2012.01.009

10.1002/jbm.10167

10.1016/j.jmbbm.2007.11.002

10.1016/j.jmbbm.2012.02.029

10.1002/jbm.b.30275

Uemura S, 2003, Functionally Graded Materials Vii, 1

10.1179/174367610X12804792635143

10.1016/j.jmbbm.2012.06.002

10.1023/A:1008929305897

10.1016/S0142-9612(00)00290-8

10.3390/ma3010026

10.1016/j.jmbbm.2011.05.009

Watari F, 2003, Development of Functionally Graded Implant and Dental Post, for Bio‐medical Application, 321

10.1034/j.1600-0501.2001.120614.x

10.1016/j.compscitech.2003.09.005

10.1016/S1359-8368(96)00021-2

Yokoyama A, 2000, Bioceramics, 445

Hedia HS, 2004, Design optimization of functionally graded dental implant, Bio Med Mater Eng, 14, 133

10.1016/j.jbiomech.2006.11.019

10.1016/j.actbio.2011.11.033

10.1002/jbm.a.30855

10.1016/j.compositesb.2009.04.015

10.1016/B978-012436630-5/50066-0

10.1007/s10853-006-0232-3

10.1002/adfm.200902165

10.4012/dmj.20.257

10.1016/S0921-5093(03)00580-X

10.1002/jbm.a.32425

10.1016/j.actbio.2010.08.019

10.1016/j.jbiomech.2004.12.020

10.1046/j.1365-2842.2002.00891.x

10.1080/10255840600837074

10.1016/j.advengsoft.2006.02.004

10.1034/j.1600-0501.1996.090606.x

10.1067/mpr.2001.115251

10.1034/j.1600-0501.1993.040206.x

Watari F, 1998, Imaging of gradient structure of titanium/apatite functionally graded dental implant, J Jpn I Met, 62, 1095, 10.2320/jinstmet1952.62.11_1095

10.4028/www.scientific.net/MSF.308-311.356

Takahashi H, 1993, Mechanical properties of functional gradient materials of titanium‐apatite and titanium zirconia for dental use, J Jpn Soc Dent Mater Devic, 12, 595

Takahashi H, 1992, Study of functionally gradient materials of titanium‐apatite and titanium‐silica for dental use, J Jpn Soc Dent Mater Devic, 11, 462

10.2320/matertrans.45.3156

10.2320/matertrans.43.3043

10.1016/0021-9290(93)90042-D

10.1111/j.1600-0722.2006.00315.x

10.4012/dmj.24.219

10.1002/jbm.b.30328

10.1016/S0300-5712(03)00045-9

Benzing UR, 1995, Biomechanical aspects of two different implant‐prosthetic concepts for edentulous maxillae, Int J Oral Maxillofac Implants, 10, 188

10.1016/j.jbiomech.2004.12.020

10.1116/1.577270

10.1007/s11661-998-0023-3

Namazu T, 2005, Advances in Fracture and Strength, Pts 1–4, 574

10.1016/S0020-1383(00)80018-2

10.1111/j.1600-0501.2007.01401.x

10.1111/j.1708-8208.2008.00105.x

10.1016/j.jcis.2011.08.061

10.1016/j.jmbbm.2011.11.004

Diamanti MV, 2011, Anodic oxidation of titanium: From technical aspects to biomedical applications, J Appl Biomater Biomech, 9, 55

10.1016/S0142-9612(97)00146-4

Hjalmarsson L, 2011, Cellular responses to cobalt‐chrome and CP titanium—An in vitro comparison of frameworks for implant‐retained oral prostheses, Swed Dent J, 35, 177

10.1186/1746-160X-4-30

10.1016/S0142-9612(98)00010-6

10.1016/0022-3913(92)90338-B

10.1016/S0142-9612(03)00120-0

Fujii T, 2010, Fabrication and strength evaluation of biocompatible ceramic‐metal composite materials, Key Eng Mater, 4, 1699

Fujii T, 2011, Fracture and Strength of Solids Vii, Pts 1 and 2, 100

10.1016/j.jmbbm.2007.04.003

10.1016/S0142-9612(00)00288-X

10.1016/j.matchemphys.2011.05.033

10.1016/j.biomaterials.2006.05.039

10.1021/cm051014c

10.1016/j.bios.2006.03.016

Veerapandian M, 2009, The state of the art in biomaterials as nanobiopharmaceuticals, Dig J Nanomater Biostruct, 4, 243

10.1039/b822214b

10.1002/jbm.a.31848

10.1002/jbm.a.32898

10.1002/jbm.820170505

10.1002/jbm.820050611

10.1179/1743676112Y.0000000006

Matsuno T, Fracture‐toughness of porous sintered bodies of hydroxyapatite, Chem Lett, 1992, 2335

10.1007/BF00124890

10.1557/JMR.1998.0015

10.2109/jcersj.104.945

10.1023/A:1006722110462

10.1002/jbm.b.31147

10.1023/A:1026487222287

10.1016/S0142-9612(02)00381-2

Sykaras N, 2000, Implant materials, designs, and surface topographies: Their effect on osseointegration. A literature review, Int J Oral Maxillofac Implants, 15, 675

Cristache CM, 2009, Titanium as dental implant material, Metal Int, 14, 14

10.2106/00004623-198668090-00013

10.1023/A:1018525015421

10.1016/j.dental.2008.03.029

Hirschhorn JS, 1969, Research in Dental and Medical Materials, 137

10.1179/pom.1995.38.3.201

10.1016/j.biomaterials.2006.11.024

10.1002/jbm.820190802

10.1002/jbm.820291213

Carlsson L, 1988, Removal torques for polished and rough titanium implants, Int J Oral Maxillofac Implants, 3, 21

10.2497/jjspm.49.1063

10.1016/S0921-5093(02)00738-4

10.1016/S0921-5093(99)00152-5

10.1023/B:JMSM.0000011815.50383.bd

10.1007/BF03027261

10.1016/j.actbio.2007.03.008

10.2497/jjspm.53.510

10.1016/j.commatsci.2010.05.021

10.1016/j.actamat.2005.05.042

10.1016/S0921-5093(01)01239-4

Black J, 1999, Fundamentals of Biocompatibilities, 444

Dee KC, 2004, An Introduction to Tissue‐Biomaterial Interactions

10.1016/S0040-6090(99)00937-2

10.1016/S0040-6090(96)08848-7

10.1016/S0921-5093(00)01045-5

10.1111/j.1551-2916.2007.01708.x

10.1023/A:1008958914818

10.1016/j.ceramint.2011.06.053

10.1016/S1359-6462(03)00020-4

10.1016/S1359-6454(03)00158-7

10.1016/j.scriptamat.2003.08.018

10.1007/BF00275423

10.1016/j.biomaterials.2005.07.041

Deckard C, 1988, Process and Control Issues in Selective Laser Sintering, 191

10.1016/j.biomaterials.2003.08.015